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1.0 INTRODUCTION

Long term stability of spacecraft materials when exposed to the space environment
continues to be a major area of investigation. The natural and induced environment surrounding
a spacecraft can decrease material performance and limit useful lifetimes. Materials must be
thoroughly tested prior to critical applications. The Optical Properties Monitor (OPM)
experiment provides the capability to perform the important flight testing of materials and was
flown on the Russian Mir Station to study the long term effects of the natural and induced space
environment on materials. The core of the OPM in-flight analysis was three independent optical
instruments. These instruments included an integrating sphere spectral reflectometer, vacuum
ultraviolet spectrometer, and a Total Integrated Scatter instrument. The OPM also monitored
selected components of the environment including molecular contamination. The OPM was
exposed on the exterior of the Mir Docking Module for approximately 8-1/2 months. In-flight
OPM data measured a low, but significant, level of contamination compared to findings on other
experiments deployed on Mir. Degradation of some materials was greater than expected
including aluminum conversion coatings and Beta Cloth. Also, significant particulate
contamination was detected by the TIS instrument from the return trip from Mir to the ground
laboratory.

The OPM development and the OPM mission to Mir was carried out under Contract
NAS8-39237 which was managed by the NASA George C. Marshall Space Flight Center
(MSFC). This Science Data Report serves as the final report for this contract. This report
describes the OPM experiment, a brief background of its development, program organization,
experiment description, mission overview including space environment definition, performance
overview, materials data including flight and ground data, in-depth post flight analysis and a
summary discussion of the findings and results. The OPM Systems Report, AZ Technology
Report No. 91-1-118-164, provides more detail on the design, implementation, testing and
performance of the OPM core systems, instruments and monitors. There are a number of other
OPM reports available. The OPM Bibliography is listed in Section 6.

1.1 Background

In 1986, the National Aeronautics and Space Administration (NASA) Office of
Aeronautics and Space Technology (OAST) released an Announcement of Opportunity (AO)
under the In-Space Technologies Experiment Program (IN-STEP). The objective of the
IN-STEP program was to demonstrate newly developed in-space technology experiments. In
response to this AO, the OPM experiment was proposed as an in-space materials laboratory to
measure in-situ the effects of the space environment on thermal control materials, optical
materials, and other materials of interest to the aerospace community. The OPM was selected
for a Phase A study to determine technical feasibility of the experiment, technical approach, and
the estimated cost. The MSFC in Huntsville, Alabama was selected by the NASA/OAST to
manage the project. A second AO was issued by NASA/OAST for the development phase of the
IN-STEP experiments. OPM was selected under this solicitation for development and flight.
Phase B (Preliminary Design) was funded to develop the OPM design and cost parameters, and
consider available payload carriers suitable for an OPM mission. In late 1992, a peer review,
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consider available payload carriers suitable for an OPM mission. In late 1992, a peer review,
called the Non-Advocate Review (NAR), was held to verify the need and worth of the
experiment prior to further funding. The OPM was subsequently approved for further
development, and the final Phase C/D (Final Design through Mission Support/Data Analyses)
funded in April 1993. Between April 1993 and September 1996, the OPM design was
completed, fabricated, integrated, tested, and delivered to MSFC.

The OPM was launched on STS-81 on January 12, 1997, mounted in the SpaceHab. The
OPM was Intravehicular Activity (IVA) transferred into the Mir Space Station on January 16,
1997. It was stowed for two and one-half months before deployment and being powered up on
the Mir Docking Module by the first joint Russian-American Extravehicular Activity (EVA) on
April 29, 1997. On June 25, 1997, the OPM lost power because of the Progress collision into
Mir's Spektr module and did not regain operational status until September 12, 1997. The OPM
continued operation until January 2, 1998 when the OPM was powered down in preparation of
the January 8, 1998 EVA to retrieve the OPM. After a successful Russian EVA retrieval, the
OPM was later transferred IVA into the Shuttle (STS-89) and returned to Kennedy Space Center
(KSC) on January 31, 1998.

1.2 Organization and Participants

The Russian Mir Station provided a unique opportunity to study the behavior of materials
in the space environment around a complex space station. The OPM experiment was exposed on
the Mir Station as part of the International Space Station (ISS) Phase 1 program. The OPM
flight hardware was developed under the NASA Crosscutting Technology Program managed by
the Office of Space Science. The ISS Phase 1 program provided joint funding and support for
the OPM mission to Mir. The OPM program was managed by the MSFC and members of the
Science Team are listed in Table 1-1.

Table 1-1. Science Team for OPM

Principal Investigator | D.R. Wilkes, AZ Technology

Project Scientist J.M. Zwiener, NASA Marshall Space Flight Center

Program Manager/s D. W. Cockrell, NASA Marshall Space Flight Center
R. M. Baggett, NASA Marshall Space Flight Center
S.R. Davis, NASA Marshall Space Flight Center

G. E. Thomas, NASA Marshall Space Flight Center
Co-Investigators J.M. Bennett, AZ Technology

E. R. Miller, AZ Technology
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Science Team J.B. Hadaway, University of Alabama at Huntsville,
Center for Applied Optics

R.R. Kamenetzky, NASA/Marshall Space Flight Center
J. C. Gregory, University of Alabama at Huntsville

J.S. Harchanko, AZ Technology

D. Crandall, AZ Technology

R.M. Mell, AZ Technology

Chief Engineer L.L. Hummer, AZ Technology

1.3 Mission Summary and Objectives

It has been demonstrated that the natural and induced space environment can cause
optical, mechanical, and thermal damage to exposed surfaces. This materials damage can, and
has, seriously affected the performance of critical spacecraft systems, including solar arrays,
optical instruments, and thermal control systems. The stability of materials in the space
environment is not well understood. To compensate for this uncertainty, spacecraft and
instrument designers frequently overdesign systems at greater cost and weight—sometimes with
reduced performance. For the large, long-duration missions of the future such as the Space
Station, overdesign of systems and instruments is extremely undesirable, and in many cases,
impossible.

The space environment is a complex combination of mostly independent constituents,
including atomic oxygen (AO), particle radiation (electrons, protons, etc.), electromagnetic
radiation, thermal vacuum, micrometeoroids, orbital debris and contamination (molecular and
particulate). These constituents vary in composition and magnitude with orbital parameters,
solar activity, seasons of the year, and time of day. The complex nature of the space
environment makes it difficult—if not impossible—to simulate an individual constituent
accurately, and certainly not the combined environment nor the synergistic effects of this
environment.

Much effort has gone into the development of environmental effects lifetime prediction
models and ground simulation testing techniques. These models and techniques must be
validated using in-space, time referenced measurements of environmental effects versus the
exposure environment. The in-situ or in-vacuum measurement of materials optical properties is
particularly important because environmental damage for many materials is reversible to some
degree when the test material is returned to the laboratory environment. Oxygen bleaching of
surface damage of ZnO pigment based thermal control paints is a prime example.'?

The OPM, which-was derived from the Thermal Control Surfaces Experiment (T CSE)“'S,
flown on the Long Duration Exposure Facility (LDEF)*? was developed to address these needs
to better understand and predict the effects of the space environment on the surface properties of
materials. The OPM is a multifunctional, reusable in-flight laboratory for the in-situ study of the
surface optical properties of materials'®. Selected materials were exposed to the low earth orbit
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space and Mir induced environment and their effects measured through in-situ measurements and
post-flight analyses.

Optical and thermal properties were measured by the OPM in-situ measurement
subsystems: spectral total hemispherical reflectance, Total Integrated Scatter (TIS), Vacuum
UltraViolet (VUV) reflectance/transmittance, and total emittance. Environmental monitors
measured selected components of the space environment (solar/earth irradiance, molecular
contamination, and atomic oxygen) to which the test samples were exposed. Detailed optical and
thermal properties, surface degradation, and contamination are being determined by post-flight
analyses.

The overall OPM experiment objective was to study the effects of the Mir space
environment, both natural and induced on optical, thermal control, solar array, and other
materials. Specific objectives were:

e Determination of the effects and damage mechanisms of the Mir space environment
on materials.

* Planned use of Mir II as an element of the ISS dictates that its environment be
characterized and understood prior to its use on ISS.

* Mir was the only opportunity to study the environment around a large space
platform for an extended period and its effects on materials and systems.

* The high inclination orbit of the Mir results in a different mix of environmental
constituents than that observed on other long duration missions such as the LDEF.
The OPM mission on Mir offered the opportunity to study this environment.

* Quantitative in-flight data are needed to determine the effects of this environment
on optical, thermal control, and power system materials and on operational
systems and payloads.

* In-situ optical property measurements of test materials due to the bleaching
effects when test samples are returned to the terrestrial environment.

e Provide space flight testing of spacecraft and optical materials.

* Critical materials will be required to operate in the environment around a large
space platform. Candidate materials for the ISS payloads and other future
missions were exposed to the Mir environment and the effects measured by pre-
flight, in-situ, and post-flight tests.

¢ Provide data to validate ground test facilities and prediction models.

* All candidate materials for use in space cannot be flight tested in the exact
environment where they will be used or for the complete mission duration.

* Accelerated ground based testing and lifetime prediction models will remain the
basis for space system design and mission planning. These tests and models
require time dependent flight data for validation.

* The OPM is designed to provide in-space time dependent optical measurements
of materials as they are normally measured during ground testing.

e Development and test of a multifunctional, reusable flight instrument for the in-situ
study of the behavior of materials in the space environment.
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* The OPM is the most comprehensive instrument system ever developed to study
the behavior of materials in space.

*+ The OPM is designed to be easily accommodated on different payload carriers
and be reprogrammed to meet varied mission requirements.

14 Sample Selection Process

The OPM is multifunctional in-space optical laboratory for the study of the behavior of
materials in the space environment. Many different materials can be tested and investigations
carried out on an OPM mission. The purpose of the sample selection process was to choose and
optimum set of test materials and investigations to be flown on the OPM mission to Mir.

Proposals for samples to fly on the OPM were solicited from all sources, including
NASA, the DoD, industry, Universities and ISS international partners. The OPM sample
selection process accommodated a wide range of interest and participation. A total of 228
sample proposals were received from 17 US organizations and two ISS international partners.
An OPM Sample Selection Advisory Committee (SSAC) was formed and reviewed all submitted
sample proposals and provided their evaluations to the OPM Sample Selection Officials. The
OPM SSAC and Sample Selection Officials (SSO) are shown in Table 1-2. The SSO considered
mission objectives, sample proposals and reviewed evaluations from the SSAC in making the
final selections. Samples were selected to fly on the OPM from four NASA centers, five ISS
Contractors, one University, two Department of Defense (DoD) organizations and the Russian
Space Company-Energia (RSC-E). A listing of the samples flown on OPM are shown in
Appendix A, along with the sponsoring organization and technical contact.
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Table 1-2. OPM Sample Selection Officials/Advisory Committee.

Sample Selection Officials
D. Wilkes - OPM Principal Investigator

S. Pearson - Space Environmental Effects (SEE) Program Manager
R. Suggs - ISS Environments

Sample Selection Advisory Committee

NASA/MSFC: J. Zwiener, S. Clifton, A. Shapiro
NASA/LaRC: D. Stoakley
NASA/GSFC: L. Kauder, P. Chen, R. Keski-Kuha
NASA/JSC: S. Koontz
NASA/LeRC: B. Banks
NASA/JPL: T. O'Donnell
NASA/ISS: T. May
MacDac/ISS: H. Babel
Boeing/ISS: J. Golden, N. Lowrey
Rocketdyne/ISS: K. Wefers
DoD/Aerospace: M. Meshishnek
DoD/AF P. Carlin (WPAFB)
OPM/AZ Tech: J. Bennett, E. Miller
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20 OPM HARDWARE DESCRIPTION

2.1 System Overview

The OPM is a fully integrated package including three optical instruments, three
environmental monitors, a data acquisition and control system (DACS), a power supply center
(PSC), a power amplifier system (PAS), a sample carrousel, and the OPM structure (see
Figure 2-1). Optical and thermal properties were measured by the OPM utilizing three in-situ
measurement subsystems (as shown in Figure 2-1) spectral total hemispherical reflectance, TIS,
and VUV reflectance/transmittance. Thermal emittance was measured using calorimetric
techniques. Major constituents of the space environment were also measured (solar/earth
irradiance, molecular contamination, and atomic oxygen) to document the natural and induced
space environment to which the test samples were exposed. It should be noted that the OPM was
designed to accommodate different measurement sub-systems. OPM provides a common
mounting structure, common multi-sample carousel, command and control software, passive
system thermal control, power, data acquisition and limited on board analysis to support
individual investigators unique requirements. Test samples were arranged on half of the circular
sample carousel in four concentric circular rows. Additional irregularly shaped samples were
accommodated inside of the four rows of samples. Samples in the three outer rows were called
“active” samples because they were measured by the on board optical instruments. The inner
samples are called “passive” because they are not measured in-flight and are evaluated in pre-
and post-flight analyses.

A summary listing of the basic properties of the OPM experiment is provided
in Table 2-1.

In the following sections, the design and performance of the on board optical instruments
and environmental monitors are discussed. Details on the OPM support systems and additional
design information of the science instruments are provided in the OPM Systems Report,
AZ Technology Report No. 91-1-118-164.
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117 kg (258 Ibs)
56 Watt Average + heaters
RS-422 Serial/15538

POWER/DATA INTERFACE BASEPLATE

AO SENSORS (4)

Figure 2-1. OPM Schematic
Table 2-1. Basic OPM Specifications.
Size (LxWxH) 829x68.3x52.1cm
includes MLI (32.6”x26.9” x 20.57)
Weight
OPM w/MLI, EVA handrails, sample cover & flight bag | 117.3 kg (258 1bs)
Deployed weight with Interface Plate and Latch 146.8 kg (323 lbs)
Power
Source Spacecraft 27 VDC
Average 56 Watts (+39 Watts for Heaters)
Peak 196 Watts
Spacecraft Command/Data I'F
Type RS-422 Serial
Data Rate 300 Kbytes/week

Thermal Control System

Passive - Ext. Radiator w/Heaters

Test Sample Capacity

72 Active Samples
26 Passive Samples

22 Sample Carousel and Flight Samples

The sample carousel housed all ninety-eight flight samples. There were seventy-two
“active” samples; meaning these were measured in flightt These samples were further
categorized by instrument: the reflectometer contained twenty samples, the VUV had thirty-two
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samples (at forty-one sample positions), and the TIS had twenty samples. The VUV contained
forty-one sample positions. There were nine calibration positions, one VUV calibration hole at
every fifth VUV sample position (reference Figure 2-2). There were twenty-six "passive"
samples. Passive meant the samples were measured only by pre- and post-flight analyses. A
listing of all flight samples is provided in Appendix A, including location number, description,
supplier, and main technical contact.

The samples were spaced around the carousel in a polar configuration with the VUV
samples on the outer row, followed by the reflectometer, TIS, and passive samples respectively
on the inner rows. Figure 2-2 illustrates the placement of the samples on the sample carousel.
The samples were spaced at 9° increments, except for the VUV samples, which were spaced at
4.5° increments because of the increased area available on the outer row.

Figure 2-2.  Sample Carousel

The flight samples were installed in sample holders to accommodate the various
thickness of flight samples, to mechanically hold them in place during the launch environment,
and to enable ease of installation/removal in the Sample Carousel. These sample holders were
customized for the reflectometer, TIS, VUV, and the passive samples. Figure 2-3 illustrates the
three basic sample holders used in the Sample Carousel. The VUV and TIS/passive samples
were identical except the outer circumference was machined to permit closer spacing around the
carousel perimeter. :
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The reflectometer sample holders were calorimeters that provided a simple method to
determine solar absorptance (os) and thermal emittance (er) of test samples. The calorimetric
technique measured the inputs to the heat balance equation and calculated solar absorptance and
total emittance. The design of the calorimeters isolated the test sample thermally from the OPM
to minimize errors caused by radiative and conductive losses. The OPM calorimeter design was
based on tlllle design that was used on the LDEF TCSE *° and that was developed originally by
the GSFC .

The calorimetric measurement procedure was an improvement over past experiments for
determining €. Previous experiments determined er when the calorimeter viewed deep space
only (i.e., no view of the sun or earth). This orientation was difficult to insure, and the time
spent in this orientation was, at times, too short to provide accurate measurements. The OPM
procedure, however, rotated the samples inside the instrument, eliminating any view of the sun
or earth.

The calorimeter consisted of three major parts: the sample disk, the inner cup, and the
outer cup (see Figure 2-4). The concept for the three-part calorimeter was for the inner cup to
act as a thermal guard for the sample disk. This design featured virtually zero conduction back
through the sample holder, and low measurable radiative heat transfer to the sides. The inner
cup, or "guard", had the same exposed area and coating as the sample disk to maintain the inner
cup temperature close to the temperature of the sample. The thermal capacitance of the inner
cup was also as close as possible to that of the sample disk to ensure the guard was effective -
even during transient sample temperatures. Kapton films, formed into cylinders, were used to
fasten the sample disk to the inner cup and to fasten the inner cup to the outer cup. Crimped
double-faced aluminized Mylar sheets were placed inside each cylinder to reduce the radiative
heat losses. Vent holes were put in the cylinders and bases of the inner and outer cups, enabling
the interior of these cups to vent to the vacuum environment. A solar absorber material was
applied to the inner sides of both the inner cup and the outer cup to minimize errors caused by
light leaks through the gaps between the sample, inner cup, and outer cup. A Platinum
Resistance Therometer (PRT) was attached to the underside of each sample disk with thermally
conducting silver epoxy to assure good thermal contact with the sample substrate. The OPM
DACS monitored the PRT to measure the temperature of the sample disk. The calorimeter was
mechanically clamped onto the carousel by the carousel mounting cover. The top of the
calorimeter was flush with the top of the carousel.

The sample carousel total rotation was fixed at 535, (525° nominal) to enable the samples
to be rotated under the measurement instruments aperture. From the nominally exposed position
("Home" position or 0°), the carousel rotated 205° Counter Clockwise (CCW) and 330° Clock
Wise (CW). These rotation limits were devised for the singular operation of each instrument to
optimize instantaneous power as well as the carousel motor operation time.

The sample field-of-view (FOV) from the carousel plane was 123° minimum in one
direction (towards the Top Cover), and 180° in the other directions (see Figure 2-5). The
restricted view was towards the OPM cover that enclosed the three measurement instruments.
Only those samples immediately adjacent to the Top Cover had the limited 123° FOV, all other
samples had a FOV greater than 123° toward the Top Cover.

10
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Figure 2-3.  Test Sample VUV, TIS, and Passive Sample
TEST SAMPLE SURFACE

v @S BAl O7émm ALLMINZED

025mm ALUMINZED
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GUARD RING SURFACE
{6 mmj
TEMPERAJURE SENSOR
I7 GUARD RING
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Figure 2-4.  Calorimeter Sample Holder (Reflectometer Sample)
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Figure 2-5.  Sample Field-of-View

2.3 Reflectometer Subsystem

The OPM reflectometer measured the spectral total hemispherical reflectance of test
materials over the spectral range of 250nm to 2500nm. This instrument is of conventional
laboratory design that used an integrating sphere, a prism monochromator, two light sources, and
two detectors to perform the required measurements. The measurement specifications for this
instrument were:

s Spectral Range: 250nm to 2500nm
e Accuracy: +3%

e Repeatability: +1%

®

Spectral Resolution: + 5% of wavelength

The OPM reflectometer was designed and built by the prime contractor, AZ Technology.
This instrument was based on AZ Technology’s commercial instrument, the Laboratory Portable
SpectroReflectometer (LPSR).

2.3.1 Optical Design

The reflectometer optical system is shown in Figure 2.6. Two light sources were used to
span the spectral range of the instrument. The instrument measurement scan was from 2500nm
(starting point) to 250nm (ending point). This scan order was chosen to allow the deuterium
lamp to stabilize prior to the scan entering the region where this lamp was used. A Tungsten
filament source was used from 2500nm to 420nm. The tungsten lamp was powered by a

12
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programmable constant current source that allowed the lamp intensity to be varied during the
scan to optimize detector signal level. The deuterium arc lamp was used to cover the 410nm to
250nm portion of the wavelength scan. The intensity of the deuterium source was not varied
during the scan. The collection optics (see Figure 2-6) included a 400nm to 2500nm high pass
dichroic filter. The dichroic filter passed the longer wavelength tungsten lamp energy but
reflected the Ultra-violet (UV) energy from the deuterium lamp.

Figure 2-6.  Reflectometer Optical Schematic

Next in the optical path was a /6.5 prism monochromator. This monochromator used
two space qualified stepper motors to control wavelength and slit width. The wavelength motor
drove a worm gear/cam mechanism that moved a Littrow mirror behind the prism inside the
monochromator to select the wavelength of light output. The second motor drove a worm
gear/cam mechanism that opened and closed the entrance and exit slits of the monochromator.
The variable entrance and exit slits allowed the output intensity of the monochromator to be
controlled to optimize signal level and to control spectral resolution. Figure 2-7 shows the actual
wavelength resolution for the OPM reflectometer. Position sensors were coupled to both the
wavelength and slit width mechanisms to provide position feedback to the control system in the
DACS.

13
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The output of the monochromator was then chopped or modulated by a 150Hz Tuning
Fork Light Chopper (TFLC). The chopped optical system was used to achieve increased signal
to noise performance of the instrument. This will be discussed in more detail in the next section.

The optical beam is then focused onto the beam deflector mirror. This mirror had two
positions and was moved by a third stepper motor. In one position the beam was directed
through the integrating sphere onto the sample being measured. In the other position the beam
was directed to the integrating sphere wall for a 100% reference. The ratio between these two
measurements is the reflectance at that wavelength.

A specially designed 115mm integrating sphere was used to collect and integrate incident
light energy. The heart of the reflectometer optical design is the integrating sphere. The
monochromatic beam enters the integrating sphere by reflecting from the common path beam
deflector mirror. The beam is directed alternately onto the sample and the sphere wall.
Integrating sphere theory states that, for an integrating sphere with no hole losses, a perfectly
reflecting diffuse coating, and an ideal detector, the detector output is directly proportional to the
radiance entering the sphere. When the beam is directed alternately to the sphere wall and the
test sample, the geometry of the two beams is identical—-except for the absorptance of the sample
material. The ratio of the detector readings for the sample and the sphere wall positions is the
total hemispherical reflectance of the sample. The properties of the sphere cancel out, resulting
in an absolute-type measurement.

In practice, sphere coatings are not perfect, diffuse reflectors. Detectors are spatially and
directionally nonuniform, and integrating spheres have hole losses. These factors determine the

14
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accuracy of the reflectance measurement. This is particularly important when measuring
samples ranging from specular to diffuse. The most critical feature for non-ideal integrating
sphere design is to maximize the detector FOV of the sphere wall while not permitting the
detector to view the sample, the first specular reflection onto the sphere wall, nor the direct
illumination of sphere wall by the incident beam. The design of the integrating sphere for the
OPM and the commercial LPSR instruments eliminates the major errors in the measurement of
either specular or non-specular samples. This is accomplished by employing unique detector
optics with integral baffles. In addition to the integrating sphere geometry, the internal sphere
coating is critical. The OPM sphere coating was a 6mm thick liner of Spectralon™ by
Labsphere, Inc.

Two detectors were used to span the spectral range of the instrument. A
Thermo-Electrically (TE) cooled lead sulfide (PbS) detector was used from 2500nm to 1100nm.
The second detector was a Silicon (Si) photodiode with a built-in pre-amplifier that was used
from 1067nm to 250nm.

2.3.2 Electronics Design

Figure 2-8 shows the basic block diagram of the reflectometer system. All aspects of
reflectometer operation were controlled by the OPM DACS. The PAC provided power and
control for the following functions:

Deuterium Lamp Heater control circuit,

Deuterium Lamp Strike circuit,

Deuterium Lamp constant current source,

Tungsten Lamp programmable current source,

PbS TE Cooler drive constant current source, and

Motor drivers (Beam Deflector, Monochromator slit and wavelength drive
motors).

The Deuterium lamp heater control circuit provided a constant 10V to the deuterium
lamp during warm-up. The heater filament inside the lamp heated the lamp’s cathode. After the
lamp struck, the heater voltage dropped to 7V during operation. The heater was turned off when
the lamp was not in operation. The deuterium lamp required a large discharge voltage in order to
initialize the arc. The strike circuit discharged a capacitor into an auto-transformer in order to
generate the 600 to 800V required to strike the lamp. Once the deuterium lamp struck, it
required a constant 300mA current flow through the arc in order to maintain stability. The PAC
contained a 300mA constant current source which powered the lamp after the lamp struck. This
circuit also provided the OPM DACS with a feedback signal so the software would know the
lamp had struck

The Tungsten lamp current source was used to drive and control the intensity of the
Tungsten lamp under DACS software control. The PbS TE Cooler drive was a constant current
source which powered the TE cooler mounted inside the PbS photoconductor. The TE Cooler
was turned off when the reflectometer was not in use.

15
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The signal conditioning electronics for the detector signal began with a CMOS switch
which selected between the two photodetectors, depending on the point in the scan. Figure 2-9
shows additional detail of the signal conditioning electronics. The selected detector signal was
first fed through a 150Hz band-pass filter to remove much of the out-of-band noise. A
programmable gain amplifier under DACS control was used to adjust the signal level before the
synchronous detection stage.

A lock-in amplifier, sometimes called a phase or synchronous demodulator, was used to
further condition the analog signal. The band-pass filter/lock-in amplifier combination was
extremely effective in rejecting out-of-band noise from both external and internal sources. This
chopped optical/electrical system also minimized effects of stray light.
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Figure 2-8.  Integrating Sphere Reflectometer Subsystem
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Figure 2-9.  Signal Conditioning Circuitry

2.3.4 Mechanical Design

The reflectometer optical/mechanical system was developed as a stand-alone module that
allowed the unit to be built and tested as a separate unit. This allowed for ease in optical
alignment, calibration, testing and verification of the reflectometer unit. The reflectometer was
built on a base-plate assembly that served as an optical bench providing the necessary rigidity to
maintain optical alignment. The base-plate provided mounting for the two light sources,
monochromator, beam deflector, all optics, PbS pre-amp, and the integrating sphere. During
OPM integration, this assembly was placed “upside down” and mounted to the OPM emissivity
plate. The emissivity plate had a cutout to allow the sphere to fit into proper position for
measuring the samples on the carousel. Figure 2-10 shows a photograph of the reflectometer
assembly. Figure 2-11 is a drawing showing the reflectometer assembly, both plan and elevation
views. Figure 2-12 shows a photograph of the assembly integrated into OPM. The TIS
assembly is in the foreground.

To further increase mechanical rigidity, the body of the monochromator was machined
out of a solid block of aluminum. The solid-body monochromator exhibited less flexing when
bolted down to the base. Additionally, the solid body monochromator had less of a
thermal-gradient -- providing increased wavelength stability. Dimensions of the reflectometer
were 8.1-inches at the widest point, 14.3-inches long, and 6.4-inches high. The approximate
weight of the reflectometer assembly was 12.2 pounds.

17
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23.5 Measurement Sequence

As with all the OPM instruments, the reflectometer was controlled by the software in the
DACS. When a reflectometer measurement sequence was initiated, the first reflectometer
sample was rotated into measurement position by the carousel and the reflectometer system was
powered up. Before the lamps were turned on, a set of “zero” readings were taken on the
detector circuitry. These data were used in post-flight data reduction to remove any residual
detector offset. The lamps were then powered on and allowed to stabilize. Internal calibration
tables were used by the software to position the monochromator wavelength and slit width, to set
the lamp intensity, and to select the proper detector and circuit gain. Detector readings were
taken and stored for the sample and reference positions of the beam deflector. The sample
reflectance at that wavelength is the ratio of the detector readings.

This process was repeated for each of the 100 wavelengths for the 2500nm to 250nm
range. Lamps and detectors were switched as appropriate for the selected wavelength. This
process was repeated for each of the twenty Reflectometer samples. Twenty-seven sets of
reflectometer measurements were performed during the OPM mission to Mir.

Figure 2-10. Photograph of the Reflectometer Assembly
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Figure 2-11.

Drawing of the Reflectometer Assembly

Figure 2-12. Instrument Assembly integrated into OPM
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24 Total Integrated Scatter (TIS) Subsystem

The TIS Scatterometer measurements augment the data taken by the reflectometer and
VUV OPM instruments. The OPM reflectometer and VUV instrument measured transmittance
and/or reflectance of selected samples, but cannot identify other effects that can impact surface
transmittance/reflectance, such as, surface roughening and surface particulate contamination.
Roughening, erosion, and/or surface conversion of various materials by Low Earth Orbit (LEO)
AO can have significant effects on optical performance. Further, particulate surface
contamination from the natural or spacecraft induced environment can adversely impact optical
properties. The most common surface inspection methods used in ground laboratories include
profilometers and microscopes - both difficult to accomplish on-orbit. An alternative
technology, the TIS can be used to monitor both effects of surface roughening and particulate
contamination. The design and verification specifications for this instrument are listed in
Table 2-2.

Table 2-2. Basic TIS Specifications

Measurement wavelengths: 532nm and 1064nm

Minimum angular extend of scatter collection: 2.5° to 80° from specular

TIS measurement range: 1 x 10™ minimum TIS value
(5 to 500A rms roughness)

Accuracy: +10%

Repeatability: +2%

The TIS provided laboratory grade measurements on exposed materials while exposed to
the space environment. This was the first time this type of instrument had been flown.

The significance of the TIS measurement was in-situ monitoring of surface damage
(roughness) and/or contamination of optical and thermal control surfaces caused by the space
environment. A two color system operating at 532nm and 1064nm, differentiated the changes in
TIS values between surface damage and/or particulate contamination respectively. These data
are needed by spacecraft designers to select materials that exhibit minimal changes in the surface
properties of materials due to the space environment.

The TIS of a surface (in reflectance) is defined as the ratio of the scattered power to the
total reflected power of a light beam incident on the surface, or

TIS = scatter/(scatter + specular) ¢))

A schematic representation of an instrument to measure TIS is shown in Figure 2-13. A
narrow beam of light (usually from a laser) is incident on the sample at a slight angle to the
normal. The specular reflected beam travels back to one detector while the scattered light is
collected by a hemispherical mirror (called a Coblentz sphere) onto another detector. The optical
powers measured by these two detectors are then used to calculate the TIS of the sample. The
beam is usually chopped and synchronous detection employed to improve the signal-to-noise
ratio. Since the hemispherical mirror can not collect all of the scattered light, a correction factor
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is determined by measuring a highly-Lambertian surface. The TIS of a perfectly Lambertian
surface is equal to 1, which leads to a correction factor of

C = Vinc*Rrams/Vscarr )

Where Vp is the power incident on the Lambertian sample (measured by moving the
scatter detector into the incident beam), Rpp is the certified total hemispherical reflectance of
the Lambertian, and Vscqrr is the measured scattered power from the Lambertian. All
subsequent scatter readings are then multiplied by the correction factor which is usually in the
range of 1.3 t0 1.5.

For randomly rough surfaces, the rms roughness (within a certain band of spatial
frequencies defined by the angular extent of the collected scattered light) can be calculated using
the following equation:

Srms = (M) [-In(1 - TIS))”. 3)

This equation assumes that all of the reflected light comes from the first surface and that
the rms roughness is much less than the wavelength of the light. These assumptions are valid
from 5 to 500A rms surface roughness.

SPECUL AR SCATTER
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Figure 2-13. Schematic of a TIS Instrument
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Figure 2-14. Relationship between TIS and Wavelength

Figure 2-14 shows the TIS of a sample (rms roughness of 2.95nm) as function of
wavelength.'? Theory predicts a linear relation on a log-log scale. Actual measurements obey
this relation out to about 2um. At this point, the contribution from particulate scatter begins to
dominate. The particulate scatter is roughly constant for all wavelengths, except at wavelengths
close to the particle size (notice the slight peak at 1um). Thus, if one uses two wavelengths, one
short and one long, then the effects of surface roughening and particulate contamination can be
distinguished. As a surface gets rougher, the two TIS readings will increase together as
predicted by Equation (3). As particulate contamination increases, the ratio of the short-to-long
TIS readings will decrease. Laboratory experiments on a breadboard TIS instrument have
proven the validity of this method.”* Thus, a two-wavelength measurement of the TIS of the
exposed samples can provide both the surface roughness and the particulate contamination in a
relatively simple instrument.

2.4.1 Optical Design

24.1.1 Total Integrated Scatter (TIS) Subsystem

The TIS instrument measures the total integrated scatter at 532 nm and 1064 nm (See
Figure 2-15."') The basis of the TIS instrument is a the hemispherical collecting mirror
(Coblentz sphere) which collects scattered light from the sample and focuses this onto the main
detector. The illuminated spot on the sample surface and the scattered light detector are located
at conjugate foci of the collecting mirror. Light from two laser sources is chopped before
striking the sample surface at a near normal angle. The specular beam returns at a small angle to
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the incident beam direction and is measured by the specular detector. A certified Lambertian
surface and a low scatter mirror are used to calibrate the system periodically. These calibration
samples are protected from space exposure by a special mechanism that only uncovers the
samples while they are being measured. These samples were measured before each set of sample
measurements to re-calibrate the system.

Total integrated scatter values down to 1x10™ can be measured by this instrument. The
accuracy of the measurements is 10%, which is comparable to the best laboratory instruments.
More importantly for the OPM, the repeatability is within 2%. This gives the instrument the
required ability to measure small changes in the surface characteristics of the test samples caused
by exposure to the space environment.

SPECULAR DETECTOR

BEAM DUMP
COLLIMATING
LENS DICHROIC BEAM COMBINER

/— 532 nm LASER

—1
COLLECTION ANGLE
CHOPPERS (2)
) \
1064 nm LASER
SCATTER DETECTOR
SAMPLE UNDER TEST

Figure 2-15. TIS Optical Schematic

TRANSFER FOLD MIRROR

COBLENTZ SPHERE

Two diode-pumped Nd:YAG lasers, manufactured by ATx Telecom and modified by
AZ Technology for flight, were used to provide the two color wavelengths of 532nm and
1064nm. Both lasers produced vertically-polarized, CW output within the stability requirement
of +2%. The output powers were nominally 5 and 50mW for the 532nm and 1064nm units
respectively. Reference Figure 2-16, TIS instrument layout, for the flight unit assembly.
Space-qualified tuning-fork choppers (from TFR Labs), located directly in front of each laser,
were used to modulate the beams and shutter them when necessary.

Following the choppers, a fused silica window at 45° was used to combine the beams.
Fresnel reflection resulted in equal power beams after the combiner. A beam dump collected the
unused beams. Next, a collimating lens, also from ATx telecom, was used on the combined
beams to insure that the beam size at the sample was less than Imm in diameter and had a
Raleigh range of at least 13-inches. The total path length from the laser to the sample was about
12-inches, so no other beam focusing optics were required. An aluminum/MgF;-coated, Zerodur
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fold mirror sat atop the Coblentz sphere to reflect the beams down to the sample location (at an
incidence angle of 2°) and to reflect the returning specular beams onto the specular detector.

The 7-inch diameter sphere, made of electro-formed nickel with a rhodium coating
(Opti-forms, Inc), had a 0.4-inch diameter hole near the vertex (Smm to the side of the optical
axis). The hole was located off center so that the beam entered the sphere at an angle of 2° to the
sample normal and struck the sample at a point 5mm to one side of and 4mm outside the center a
curvature of the sphere. This gave the optimum horizontal separation of the beam and detector
as well as vertical separation of the sample and detector. The specular reflected beam exited the
sphere at a small angle from the incoming beam so that it was measured by a detector. Since
aberrations did not allow efficient collection of light beyond 80°, the sphere was masked to
collect from 2.5° to 80° from the specular direction.

The detectors were off-the-shelf Si photodiodes from Hamamatsu (S2386-45K) with
3.9mm x 4.6mm active areas. They possessed a linear dynamic range of more than six decades.
Custom pre-amplifiers were designed and built with the proper gain to handle the expected
signals. A synchronous detection circuit located in the main OPM DACS provided further gain
up to a factor of 16. The analog signal processing for the TIS was identical to that used on the
reflectometer as described in Section 2.3 and to TIS detailed block diagram in Figure 2-17.

2.4.2 Mechanical Design

The TIS was designed for mounting all components to a solid, single-piece, aluminum
baseplate for structural integrity. The lasers and Coblentz sphere were accurately located using -
dowel pins. The other components were attached in ways that allowed for rotation, tilt (with
shims), and lateral adjustment for alignment. A boss on the underside of the baseplate was
designed to fit very closely into a pilot hole in the OPM emissivity plate to accurately place the
TIS instrument relative to the samples in the carousel. In this configuration, the illuminated spot
on the sample was located Smm to one side and 4mm outside the center of curvature of the
Coblentz sphere. The center of the scatter detector was then located at the conjugate point 5mm
to the other side and 4mm inside the center of curvature. The aluminum surfaces of the
instrument were either alodined (for corrosion resistance) or painted with a low-reflectance black
coating developed by AZ Technology (for stray light control). Eight easily-accessed bolts were
used to fasten the TIS to the OPM. Two power cables connected the lasers to the OPM PSC.
Two other connectors interfaced the choppers, detectors, and thermistors (one on each laser) to
the OPM DACS.
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Figure 2-17. Detailed Block Diagram

The most challenging components for the flight instrument were the lasers. No
space-qualified lasers were found that were suitably compact, low power, nor of the desired
wavelengths for the TIS. The only space-qualified lasers identified at the time were extremely
expensive, bulky, and designed as one-of-a-kind components for specific flight programs. Small
diode-pumped Nd:YAG lasers made by ATx Telecom were used in the conceptual breadboard
TIS instrument. With their small size and ruggedness (developed for field use in the
telecommunications industry), these lasers seemed to be the best choice for flight. A sealed,
aluminum housing was designed to make the lasers vacuum-compatible. The standard ATx laser
cores (one 532nm and one at 1064nm) were put into the housings and sealed with Viton o-rings.
The resulting lasers were roughly 5.5-inches long x 2.5-inches wide x 2.5-inches tall and
weighed about 1.2kg (2.7Ibs) each (the 532nm laser is slightly bigger than the 1064nm laser).
Sealed connectors were mounted to the housing for power/feedback control cabling.

The final configuration of the TIS envelope was 18-inches wide x 11-inches deep x
6-inches high. The TIS flight weight was approximately 14lbs.

2.43 Measurement Sequence

TIS was the first instrument operated during the weekly optical measurement run.
During initialization processing, the instrument relays were enabled, a "zero offset" reading was
made of the detectors. The 532nm and 1064nm lasers were struck and allowed to warm
up/stabilize for 30 minutes. Next a calibration was performed prior to test sample measurement
to account for any changes in the system, such as a change in Coblentz sphere reflectance. A
special calibration sample was developed consisting of a Lambertian material surrounding a
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high-quality mirror (Figure 2-18). The Lambertian material was a space-grade Spectralon™
(PTFE) which has been shown to be, with proper handling, a clean, stable sensor calibration
material for LEO. The total hemispherical reflectance of the Spectralon™ at both TIS
wavelengths is 0.99. The mirror was required since the scatter detector can not be moved into
the incident beam to measure the power. The mirror directed each beam, with very little loss,
back to the specular detector for measurement of the incident power. During calibration, a set of
four scatter readings were taken from the Spectralon™ surface, and three specular readings were
taken from the mirror (the seven dots in Figure 2-18 indicate the measurement locations). Each
set was then averaged and used to calculate the correction factor according to Equation (2). A
special holder was designed in the sample carousel for the calibration sample which kept it
covered at all times except for when it was under the TIS instrument.

Following calibration, each of the twenty 0.75-inch diameter test samples was rotated
into place for measurement. Three measurements, each consisting of scatter and specular
detector voltages at each wavelength, were made per sample. Switching between wavelengths
was accomplished by cycling power to the choppers. Each chopper, when powered down,
effectively shuttered the laser beam. The voltage readings, along with their
automatically-adjusted electronic gain factors were saved in OPM permanent memory. Some
diagnostic voltages from the lasers were also saved at the beginning of each sequence.
Following the one hour measurement sequence, the TIS system was powered down.

Figure 2-18. Calibration (Left) and Test Sample (Right) Layout.

25 Vacuum Ultraviolet Spectrometer Subsystem

The VUV spectrometer measured the specular reflectance and transmittance of test
samples in the vacuum UV spectrum from 121.6nm (Lyman a) to 250nm. The VUV instrument
was to characterize the change in specular reflectance and transmittances over time due to
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exposure to the space environment. The performance specifications for this instrument are listed
in Table 2-3.

Table 2-3. VUV Instrument Specifications

Accuracy: + 5%

Repeatability: +2%
Measurement wavelengths: 121.6nm
140.0nm
160.0nm
170.0nm
180.0nm
200.0nm
250.0nm

2.5.1 Optical Design

The OPM VUV instrument is a classical single beam (see Figure 2-19) spectrometer to
measure specular reflectance and transmittance. A filter wheel monochrometer is used to select
the desired measurement wavelength. As with all single beam spectrometers, a method must be
provided to calibrate the detectors. For the OPM VUV instrument this was accomplished in two
steps. At selected positions in the carousel, there were empty sample positions provided that
served as calibration holes. When a calibration hole is in position, as shown in F igure 2-20 a and
b, the transmittance detector views the full incident optical beam. This reading is the 100%
reference reading for transmittance measurements. In order to calibrate the reflectance detector,
the optical path is changed as shown in Figure 2-20c by rotating the 20 mm fold mirror and 20
mm spherical mirror. In this position, the reflectance detector directly views the full incident
beam providing the 100% calibration signal.

A ruggedized deuterium lamp with a magnesium fluoride window provided the vacuum
ultraviolet energy for the instrument. An off-axis ellipsoidal mirror focused the light energy
through an eight-position filter wheel monochromator to a fold mirror, a collimating mirror, and
to the test sample. The light was either reflected from or transmitted through the sample to
identical detectors above and below the sample. At the filter wheel, seven narrow band pass UV
filters selected the desired wavelength. One position in the filter wheel was a "hole" (i.e. no
filter) used for end-to-end system calibration. A small stepper motor, controlled by the DACS,
rotated the filter wheel for individual filter selection. The monochromatic beam was chopped
using a 150Hz tuning fork light chopper to increase the signal-to-noise ratio. The fold mirror
and collimating mirror were mounted to a rotator arm that rotated at pre-defined intervals for
detector calibration.

The detectors were commercial Si photodiode detectors with the UV quartz window

removed. A Lexan cylinder coated with Vacuum Deposited Aluminum (VDA) along its axial
length ("light pipe") and sodium Salicylate coating of the exposed end converted the UV energy
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could sense. The detector outputs were read by a phase-sensitive detection circuit and processed

by the DACS.
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Figure 2-19. VUV Spectrometer Optical Schematic.
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Figure 2-20. Operational Schematic of VUV Specular Reflectometer (not to scale)

The light source used for the VUV instrument was the VOS5 Deuterium Arc Lamp
manufactured by Catheodeon, LTD. This lamp was an arc lamp complete with an anode,
cathode, and heater. The heater heated up the cathode prior to the anode being struck. Once the
cathode was heated, the anode required a high voltage strike to turn the lamp on. The lamp
produced UV light in the wavelength range of 121.6 - 250.0nm.

A custom precision tuning fork chopper used in the instrument was manufactured by TFR
Laboratories, Inc. The chopper ran at a frequency of 150Hz with Type S shutters for sine wave
modulations. The shutters were coated with a non-reflecting optical flat black coating. The
chopper chopped/shaped the light beam into a sinusoidal beam as it passed through a filter
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assembly. The filter assembly consisted of a filter wheel with eight holes. Seven of the eight
holes contained UV filters in the wavelengths of 121.6nm, 140nm, 160nm, 170nm, 180nm,
200nm, and 250nm. The eighth hole was a small aperture hole used for calibration.

The VUV instrument utilized two identical detector assemblies for the reflectance and
transmission data collection. Each detector assembly consisted of a detector and a light pipe.
Both detectors were HUV4000B silicon photodiodes manufactured by EG&G Optoelectronics,
Canada. The detectors utilized an UV-enhanced PIN photodiode with an internal pre-amp. This
detector is sensitive down to a wavelength 185nm but not to the required 121nm.

To extend the detector sensitivity to 121nm, each detector was fitted with a short light
pipe that was coated with a fluorescing coating of sodium salicylate. This is a common
technique in VUV spectroscopy to use a coating that will fluoresce when exposed to vacuum
ultraviolet energy and re-emit energy in the visible wavelength band at approximately 500nm.
This visible light can then be easily measured using a silicon detector. The short light pipe was
also used to provide some light ray mixing for more uniform detector response. The light pipe
was a custom cut cylinder of Lexan. All surfaces of the piece were polished to remove all
scratches, burrs, and sharp edges. The exterior cylindrical face of the Lexan light pipe was
coated with vacuum deposition aluminum. One end was coated with sodium salicylate. The
other end of the Lexan piece was placed against the detector aperture.

2.5.2 Electrical Design

The VUV electronics system is shown in Figure 2-21 and is very similar to the
reflectometer described in Section 2.3.2. The VUV instrument uses a chopped optical system
and the same synchronous detection system used for the reflectometer.

Power for the deuterium lamp and stepper motors was provided from the PAC under
DACS control.

The OPM DACS controlled all aspects of VUV operation. Small magnets and magnetic
sensors provided positional feedback for operating the filter wheel and detector reversing rotor
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Figure 2-21. VUV Spectrometer Subsystem

Figure 2-22. Assembled VUV Instrument
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2.53 Mechanical Design

The mechanical design incorporated concepts to keep the optical path simple, minimize
moving parts, and minimize volume. The VUV instrument was designed as an upright assembly
that utilized a single light source with a simple optical path. This engineering design for the
VUV instrument included support brackets, main support frame, mirror supports, rotator arm
assembly, and a lamp holder assembly. Additionally, thermal analysis and structural stress
analysis was performed on the design to ensure environment conditions could be met.

The VUV instrument was designed as an independent modular instrument. The vuv
assembly design used its baseplate as the main support structure. The VUV assembly was
mounted near the top of the OPM, and under the Top Cover. Its two detectors were placed on
either side of the sample carousel (see Figures 2-19 and 2-22). The instrument was designed as a
functional modular unit for easy removal and re-assembly in the OPM.

The use of the deuterium lamp required special attention in the mechanical design. A
custom lamp holder had to be designed because the deuterium lamp was very fragile and it had
to withstand the vibration and acoustics environment induced by the Shuttle launch. Likewise,
the deuterium lamp holder was designed to protect and hold the lamp in the launch environment.
The holder was made of Teflon material to protect the lamp. An electrical connector, made of
Vespel, was custom designed to clamp to the electrodes protruding from the end of the lamp.
When the lamp was struck, the lamp electrode differential voltage ranged from 600V to 900V.
Vespel was selected because it could accommodate the lamp operating temperature and had a
high dielectric voltage that accommodated the high voltage differential between the lamp
electrodes.

The VUV instrument had two motors for the two movable assemblies: rotator arm
assembly and the filter wheel assembly. The rotator arm assembly was designed to direct the
light source to the top and bottom of the sample for calibration of the single beam system. For
calibration of each detector, the rotator arm assembly would rotate up and down 180°. A custom
Geneva drive system with a stepper motor drove the rotator arm assembly.

The filter wheel assembly was designed to hold seven different wavelength filters for the
VUV instrument. The wheel had eight holes: seven holes for the filters, and one aperture hole
for instrument calibration. A custom Geneva drive system with a stepper motor drove the filter
wheel assembly.

The VUV dimensions were approximately 4.8-inches wide, 9.3-inches deep, and
10.1-inches high. The approximate weight of the VUV Assembly was 6.5 1bs.
2.54 Measurement Sequence

VUV was the second instrument operated during the weekly measurement run. During

initialization processing, the instrument relays were enabled, a "zero offset" reading was made of
the detectors, and the Deuterium lamp was struck and allowed to warm up/stabilize.
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The carousel contained 41 positions for VUV measurements with calibration holes set at
positions 0,5,10,15,20,25,30,35,40. Thirty-two samples were at all remaining positions. The
VUV arm remained in the up/transmission position for sample readings. The VUV arm was
moved up and down at each calibration hole to calibrate the detectors. FEach sample was
measured using seven filters plus a calibration hole on the rotating filter wheel. Two detectors,
transmission and reflectance, recorded the reflected light. Detector readings and status data was
stored for each of the test samples and calibration positions.

2.6 Temperature Controlled Quartz Crystal Microbalance Subsystem

The OPM Experiment used TQCM sensors to monitor the molecular contamination
environment to which the flight test samples were exposed. There were two TQCM units used
on the OPM. The purpose of a TQCM was to measure the mass deposition rate and total
accumulation of contamination materials that deposited on its surface. The TQCM units used on
OPM were designed and built by Faraday Laboratories in La Jolla, California. The measurement
and control electronics were designed by AZ Technology.

The TQCM module consisted of a precision matched set of AT cut quartz crystals that
operated at 15MHz. Their resonant frequency versus temperature is the parameter selected for
matching. The crystals were 1.27cm in diameter and were optically polished. Inside the module
were a temperature sensor (thermistor), a two stage Thermo-Electric Device (TED), crystal drive
electronics and a Beat Frequency Oscillator (BFO). Output signal consists of the difference in
frequency (beat frequency) between two identical oscillating circuits, each incorporating one of
the crystals. Only one surface of one of the sensor crystals was exposed to the contamination
flux. The mass loading, m, on the crystal will increase the output beat frequency. The beat
frequency is directly proportional to the mass of contamination collected on the exposed crystal.
This is a linear relationship, unless very thick deposits are accumulated.

m=1.56 x 10® g/cm’ Hz

The thickness of the contamination deposit is calculated from the measured mass by
assuming a density. The normal assumption for contamination is a density of “1.” If the actual
contamination can be identified, then a more accurate number can be used. When thickness is
given is this report, a density of “1” was utilized.

The TQCM units were mounted in the OPM front corner adjacent to the flight samples.
Indium foil was used to insure good thermal contact of the TQCM sensors to the OPM structure.
The mounting bracket also insured the top of the TQCM sensor was in the same plane as the
flight samples.

The TQCM sensors were controlled and monitored by the OPM DACS under software
control. The TED was used in heating or cooling mode to control the temperature of the TQCM
crystals. This allowed the TQCM to be driven to temperatures below ambient for contaminant
collection. If the TQCM sensor became saturated, it could be driven hot (up to 100°C) to drive
contaminants off the exposed crystal. The second order closed loop analog temperature control
circuits for the TED was located in the OPM PAC. The controller was designed to maintain the
TQCM temperature within 1°C for the full range of 100°C to -40°C. The control circuits for the
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TQCM sensors were set to maintain sensor temperatures of -10°C and -30°C throughout the
OPM mission to Mir.

The frequency measurement circuitry in the DACS had a resolution of 1/2Hz from 1Hz to
about 20KHz. The TQCM software drivers were used to monitor TQCM beat frequencies and
set TQCM operating temperatures. Each TQCM beat frequency was measured and recorded
once every minute. Each TQCM operating temperature was checked and, if necessary, adjusted
once every minute. If a TQCM beat frequency reached levels greater than 30KHz, the TQCM
software drove the sensor into bakeout mode. In this mode, the sensor temperature would rise to
80°C for 1 hour in order to drive volatile contamination off of the exposed crystal’s surface.

2.7 Irradiance Monitor Subsystem

The OPM irradiance monitor was designed to measure incident energy from the sun,
earth Albedo, and earth IR emission. It was also to provide a measure of the exposure time of
the flight samples to the direct solar environment.

Two radiometers were used for irradiance measurements: one for the combined direct
solar incidence and earth Albedo, and the second for earth-emitted energy (infrared). The design
was a simple one using standard detectors and optics. The spectral range of the three energy
sources (direct solar, earth Albedo, and earth emitted IR) overlap, and, therefore, could not
simply be separately measured by the radiometers. The radiometer with the quartz lens was
designed to see mainly the direct solar and earth Albedo. The radiometer with the germanium
optics was designed to see mainly the earth emitted IR. By knowing the OPM mission attitude,
the direct solar, earth Albedo, and earth-emitted energy could be calculated from these two
radiometers.

The radiometers for this experiment (reference Figures 2-23 and 2-24) consisted of
thermopile detectors (a multiple-junction thermocouple) painted flat black covered with optics
that selectively passed the external energy flux. Multiple junctions increased the sensitivity of
the detector to the incident energy flux and gave a greater voltage output. Thermistors internal to
the detector were used to monitor the detector thermal response. Baffles mounted over the lenses
tailored the FOV of the radiometers to be close to the same as for the flight test samples. The
lens material was selected to tailor the spectral response of the radiometer. For the solar spectral
region of 0.2 to 3 microns, a quartz lens was used. A germanium lens was used for the infrared
spectrum (between 2 and 20 microns). The irradiance monitor accuracy at near normal angles of
incidence was not significantly degraded because of errors in attitude data. However, due to the
near cosine response of the radiometer, the "system" accuracy approached five percent for low
angles of incidence. The radiometer performance criteria are listed in Table 2-4.
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Table 2-4. Radiometer Performance Criteria
Solar Radiometer | Infrared Radiometer
Spectral Range 200nm - 3,000nm | 2,000nm - 20,000nm
Optical Window Quartz Germanium
Accuracy 5% 5%
FOV 150° 150°
See Figure 2.7-1 2.7-2

The radiometers were mounted on the OPM sample carousel, as shown in Figures 2-1
and 2-2 OPM Assembly, and flush with the carousel top plane to enable the carousel to rotate
inside the OPM. The radiometers were placed into a pilot hole in the carousel, pinned by a
dowel, and bolted to the carousel. The lens was mechanically clamped to the radiometer housing
to comply with the "frangible” material safety issues of the Safety Panels

Each of the two radiometers had a pre-amp on the carousel sub-multiplexer board for

signal conditioning prior to routing through the OPM cable hamess to the DACS.

The

radiometers were read once per minute during monitoring mode by the DACS under software

control.

22874 ————=

LENS BAFFLE

Figure 2-23.
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Figure 2-24. Earth IR Radiometer.
2.7.1. Radiometer Calibration

Both OPM radiometers were calibrated using equipment and laboratory facilities of the
U.S. Army Radiation Standards and Dosimetry Laboratory at Redstone Arsenal. The radiometer
electrical output produced by a known source of total irradiance was recorded for each unit under
test. A standard 1,000 watt quartz-halogen Tungsten lamp was used as the calibrated source for
the solar radiometer. A laboratory blackbody operating at 600° Kelvin was used as the source
for the IR radiometer calibration. Because of the extremely wide FOV associated with the
radiometers, calibration using an extended source large enough to completely fill the FOV was
considered to be impractical, although this was the preferred method for achieving direct
calibration. Alternatively, the radiometer response to a small source was determined for all
incidence angles up to and including the maximum field angle to determine any departure of the
radiometer response from that of an ideal cosine receiver.

The radiometers were mounted on a rotary stage that permitted adjustment of the incident
angle by rotating the radiometer with respect to the source. Angular response was determined
for field angles of -100 to +100° at 5° intervals in both x and y axes. In order to establish
repeatability of the measurements, three runs were made for each setup. The results were
averaged to determine the calibration factors. Additional information regarding the radiometer
calibration may be found in the Radiometer Calibration Test Report, AZ Technology Report No.
91-1-118-142.

2.8 Atomic Oxygen Monitor Subsystem

The effects of AO are one of the primary concerns for materials operating in the LEO
space environment. To characterize the effect of AO exposure on materials, the total exposure or
fluence and the time history of the exposure must be determined. To provide this required
flexibility, the OPM AO monitor was designed to be sensitive enough to measure low AO flux

37



91-1-118-169
December 31, 1999

levels where sensitive materials begin to exhibit changes. It must also provide a wide dynamic
range for long duration OPM missions.

At the lower LEO altitudes (about 300km) where the Shuttle normally operates, the
fluence rate is 10" to 10'® atoms/cm?/sec dePending on the solar activity. The total fluence on
typical Shuttle missions ranges from 6.5 x 10" to 3.5 x 10%° atoms/cm”.

At the hfgher altitudes (up to 500km) where the Space Station will operate, the fluence

rate is significantly lower in the 10" to 10" atoms/cm?/sec range, for a total fluence per year of
10" to 10?' atoms/cm?.

Given the wide range of potential AO fluence rates and the AO sensitivity of different
materials, the OPM AO monitor sensitivity needed to be less than 10'® atoms/cm*sec and
provide a wide dynamic range.

The OPM AO monitor consisted of four carbon film sensors which were exposed
sequentially to provide the needed sensitivity and wide dynamic range. The AO sensor used a
carbon film as the active element for detecting AO. The carbon sensor was exposed to the
AOQ environment and was eroded away by the reaction of carbon with AQ. The resistivity of the
carbon element was measured by the OPM system to determine the erosion rate of the element.
Combining this rate with AO Reaction Efficiency (RE) for carbon, the total fluence of the
exposure was determined. Carbon was chosen as the sensor material because it has zero order
reaction kinetics with AO with the resultant products leaving the surface. It was also electrically
conductive for ease of measurement. The AO sensors for the OPM were built by Dr. John
Gregory of the University of Alabama in Huntsville (UAH). The RE for carbon has been
measured at 1.2 x 102 cm?/atom, and to lie in the range of 0.9 to 1.7 x 10 cm®/atom depending
on the temperature and form of the carbon. The thickness and dimensions of the carbon film can
be selected for each mission to accommodate the expected total fluence. Using multiple sensors
in the AO monitor, the full fluence can be accommodated even with the failure of one sensor

The AO sensor is shown in Figure 2-25. It used two carbon film elements. One of the
elements was overcoated with a protective coating of Sodium Silicate (NaSiO,) to prevent it
from eroding and to account for temperature effects in the resistivity measurements of the sensor.
The other element was left exposed to the AO environment. The resistance of each element and
the temperature of the substrate were recorded by the OPM data system.
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Figure 2-25. AO Sensor Assembly

The AO monitor assembly is shown in Figure 2-26 and consists of four AO sensors
mounted on a common sensor plate assembly, and a stepper motor driven cover that exposed one
sensor at a time. The sensor plate assembly, as shown in Figure 2-27, placed the four sensors
and one “blank” position in a circular pattern. The cover plate fit tightly over the sensor plate
and exposed one of the positions at a time. During ground processing and launch, all sensors
were protected by the AO cover plate and the "blank” sensor position was exposed. During the
OPM initialization, the AO cover plate was rotated to expose the first sensor. When the
resistance of an element rose above a preset value, the next sensor was to be moved into position.
A measurement multiplexer board was also fastened onto the AO Monitor. This multiplexer
interfaced the AO sensors and other sensors inside OPM to the DACS for measurement and
control. The AO monitor was mounted in the OPM front corner (opposite the TQCMs) adjacent
to the flight samples to monitor the AO fluence incident on the test samples.

The OPM DACS controlled the operation of the AO Monitor and measured sensor resistance and
temperature. Resistance measurement was performed using a dual multiplexer design, which
allowed 4-wire Kelvin measurements. The four wire measurement minimized errors due to
resistance losses in wiring to the AO sensors. The AO cover plate was rotated by a stepper
motor under software control. Magnetic sensors and small magnets on the mechanism provided
position feedback to the DACS to aid in the positioning sequence.
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Figure 2-26. AO Monitor Assembly

The software for the AO monitor provided great flexibility in when and how the AO
sensors were exposed and for how long. For the OPM mission on Mir, the expected attitude was
to be stabilized with respect to the velocity vector (and AO flux) for the majority of the time.
For the location of OPM on Mir, this would have resulted in an extremely large fluence of AO
on the AO sensors. This fluence level would have eroded away all four of the AO sensors prior
to the end of the mission. To avoid this problem, the AO sensors were only exposed for 2-hours
per every 24-hour day. This process would extend the life of the AO sensors for the complete
mission. While exposed, AO sensor and temperature data were taken at a rate of once per
minute. As will be seen in the later mission discussions, the Mir attitudes were rarely velocity
vector stabile. Mir was almost always in a solar inertial attitude to maximize solar array power.
These attitudes resulted in a small fluence. Mission flight attitude and environment are discussed
in Section 3.
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Figure 2-27. AO Sensor Plate Assembly
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3.0 OPM/MIR MISSION

The OPM mission to Mir was a complex mission that combined both manned IVA and
EVA operations. During this mission there were several events that affected the OPM
deployment and operation. The OPM mission and these events will be described in the next
section followed by a discussion of the OPM/Mir mission environment. In Section 3.3 the
performance of the OPM systems and instruments will be discussed.

3.1 Mission Overview

The OPM was transported to the Mir space station, inside the SpaceHab module on the
Space Shuttle mission STS-81 in January 1997. During this mission, OPM was transferred via
internal vehicle activity (IVA) into the Mir and was tethered to the wall inside Mir. The OPM
was to have been deployed on the outside of Mir soon after the end of the Shuttle mission. Due
to other activities on Mir, the deployment of OPM was delayed until the end of April 1997.
During the storage period in Mir, there was a fire (February 23, 1997) that caused considerable
difficulty for the crew and the environmental system. There was significant water condensation
reported inside the Mir. Post-flight inspections of the OPM showed signs of this condensation
on the internal OPM surfaces.

The OPM was deployed on the exterior of the Mir Docking Module (DM) by a joint
US/Russian EVA and activated on April 29, 1997. The OPM was mounted on the exterior of the
DM as shown in Figure 3-1. Figures 3-2 and 3-3 are photos of the mounting location of OPM on
the DM. This site and orientation was chosen because it was one of two available mounting
locations, it provided a view of the Mir core and other modules, and also a good exposure to the
natural space environment. The OPM was mounted on the Mir Space Station with customized
interface hardware. The Russians supplied a latch that mechanically interfaced to standard
interfaces used on the Mir exterior modules.

Within one hour of power up, the OPM initiated its first measurement sequence and then
operated continuously except during several Mir power outages from activation at deployment
until just before retrieval. When the OPM received power, the OPM ran autonomously
performing environmental monitoring and weekly optical properties measurements. Data were
stored internally inside the OPM and periodically dumped by the crew using the Mir Interface to
Payload System (MIPS). The MIPS allowed the data to be down-linked to the ground through
Russian ground stations. A high priority subset of the collected data was also archived in the
OPM DACS in case the data was not recovered from the telemetry process.

OPM operated until January 8, 1998 except for a period of time from June 25,1997 to
approximately September 9, 1997 where the power was off due to the Progress accident. Even
after power was restored, there were a number of other power outages in the days following
power restoration. The OPM was retrieved from the Docking Module on January 9, 1998
Moscow Time (MT) by Russian EVA and returned to ground on STS-89 later that month. The
OPM was returned to the AZ Technology laboratories for post-flight analyses.
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Figure 3-1. OPM Mounted on the Mir Docking Module.

Figure 3-2. OPM Mounted on the Docking Module.
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Figure 3-3.

Close-up of OPM on Mir.

3.2 OPM/Mir Environment

The natural space environmental constituents of concern for the OPM mission on Mir and
for the ISS are the solar irradiance and the residual atmospheric atomic oxygen. The exposure
condition of any surface on a spacecraft is dependent on the orbit and the attitude of the vehicle
and the time integrated value of this exposure. Transient spacecraft maneuvers are not of
significant importance unless the new attitude results in a significant change in the thermal
environment that could cause increased molecular contamination accumulation or thermally
induced artificial aging. This situation is true for the OPM mission on Mir.

To address the need to understand the OPM exposure environment, the actual Mir
attitudes were analyzed and translated to the OPM coordinate system by the Russian Space
Company Energia (RSC-E) and the Russian Space Agency (RSA)". The elevation and azimuth
data were provided at one-minute intervals for both the solar vector and the velocity vector
relative to the OPM test samples (See Figure 3-4). The detailed attitude data were analyzed to
determine the exposure levels of the OPM samples and surfaces for both solar and AO exposure.
Table 3-1 shows the integrated solar and atomic oxygen exposure by month for the OPM
samples and for the four other sides (as defined in Figure 3-4) of OPM.

Some general observations can be made from the OPM/Mir attitude data. Figure 3-5
shows the solar elevation and azimuth to the OPM sample array for May 1997 which is
representative of the OPM mission except for the two months following the Progress accident on
June 26, 1997. The preferred attitude for the Mir during the OPM mission was solar inertial with
the sun off the left end of the OPM and slightly below the plane of the sample array most of the
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time. This results in a very small direct solar exposure for May 1997 of only 37 equivalent sun
hours (ESH) for the samples. Conversely, the left end of OPM saw over 400 ESH for this same
time period. There were operational attitude changes performed periodically but were usually
short followed by a return to the preferred attitude.

For the couple of months following the Progress accident, the attitude was still solar
inertial most of the time but the attitude was somewhat different with the sample array seeing
much more solar exposure. Figure 3-6 shows the solar attitude data for July 1997, the month
following the accident. The integrated exposure data in Table 3-1 indicates that, in September
1997, the Mir returned to the preferred flight attitudes that were observed before the Progress
accident.

220538 S5 AZIMUTH "0”
OPM TOP VIEW

N =  (NORMAL TO OPM)
S =  (SOLARVECTOR)
oo V = (VELOCITY VECTOR)
/ NAS = (NORMAL/SOLAR ANGLE)
FRONT S8 NAV =  (NORMALNVELOCITY VECTOR ANGLE)

Ag = (OPWSOLAR AZIMUTH)
Ay = (OPM VELOCITY VECTOR AZIMUTH)

OPM SOLAR AND VELOCITY VECTOR ANGLES

Figure 3-4. OPM Attitude Data Coordinate System.
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OPM/Mir Attitude Data for May, 1997
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Figure 3-5. May 1997 Solar Elevation and Azimuth for the OPM Sample Array
Table 3-1. OPM Solar and AO Exposure by Month
Month Direct solar exposure (ESH) AO fluence(atoms/cm?)
OFM | Left | Front | Right | Beck | OPM | Lemt Front | Right _ Beck |
Samples end | side end side Samples end side end : side
May, 1997 7 a3 | 2 59 2 93EH19] S4EH9|  10E+20] 10E+20.  10E+20}
June, 1957 73 366 | 8 56 24 84E+19| 88E+19|  8SE+9] 9OE+19.  83EH9
July, 1997 353 164 | 12 68 12 89E+19| 92E+19|  9O9E+9| 9LE+I9  99EH9
| August, 1997 24 2% i 18 2 y<) 8SE+19| 24E+1S| 10E+20! 85E+19.  10E+20
September, 1997 13 3%4 | 13 2 17 90E+19| 92E+9| 62E+19] 93E+19'  69EHS
Octobez, 1997 2 a3 19 16 7 96E+19| 9TE+19]  7SE+19] 96E+19:  80E+i9]
Novembez, 1997 62 45 | 24 38 12 89E+19| SBE+I9| 69E+H9!  SOE+  7.IEHIS
December, 1997 39 a1 | 2% 65 12 9SE+19| 9.SE+19| 8SE+I9] 96E+19.  84EHS
January, 1993 5 105 | 1 6 5 19E+H9! 18E+19]  27E+19| 18E+19  27E+19
Mission total g2l  2m 14| 39 152 74| 75Ew0|  72840|  7emem 7.2E+20]
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OPM/Mir Attitude Data for
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Figure 3-6.  July 1997 Solar Elevation and Azimuth for the OPM Sample Array
3.3 OPM Performance

The OPM systems and instruments overall worked extremely well for the difficult
mission to Mir. The OPM is a very complex space experiment that was exposed to the internal
and external space environment and several off-nominal events. In this section, the performance
of the OPM instruments, monitors, and support systems will be discussed. There were a few
anomalies that occurred during the mission. These overall anomalies will be discussed here
along with their effect on OPM mission science. More detail on the OPM systems and the
anomalies can be found in the OPM Systems Report, AZ Technology Report No. 91-1-118-164.
The performance of the OPM instruments and monitors will be discussed in Section 4.

Most OPM instruments and subsystems performed extremely well over the Mir mission
providing unique data on the behavior of materials in the Mir environment. The reflectometer
and the TIS optical instruments performed extremely well over the difficult mission. There was
only one anomaly that had a significant effect on mission data. This anomaly was on the VUV
instrument that prevented any in-space VUV optical measurements. The other anomalies were
the failure of the reflectometer tungsten lamp at the end of the mission and solar radiometer
detector.
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The support systems performed very well and as designed. There were no anomalies in
these systems. There are a few general observations that can be made about the OPM system:

The OPM performed well in the space environment, and withstood unexpected
conditions;

The OPM returned intact. There were no frangible material (broken glass) issues.
The external surfaces had some obvious "wear," but had not broken;

There were no signs of "self-contamination." The OPM was a "clean” payload;
The software control program maintained good control over the autonomous OPM
operation;

The data storage memory in the DACS survived with only a few "upsets" that were
easily corrected in post-flight data reduction;

The operational memory in the DACS did see a few single bit errors. This memory
was protected with single bit error detection and correction (EDAC) and periodic
memory scrubbing that resulted in no anomalous operations of the data system;
Thermal margins were adequate. Station attitude went to full sun twice during the
mission, creating over temperature conditions, but core systems remained operational;
OPM was unpowered for two and one-half months while OPM was deployed in the
space environment; but the OPM systems still powered up successfully and
completed the mission.

The most significant unexpected event affecting OPM operation was the Progress
collision with the Spectr module in late June 1997. This resulted in the loss of power to OPM for
over two months. There was concern that OPM may have gotten too cold and would not operate
properly if power was restored. Analysis showed that, while OPM was very cold, it would start
up and work properly. The system did turn on and operate but did suffer two minor additional
problems after power was restored. These were:

The VUY filter wheel rotation was intermittent after power restoration. The filter
wheel began "sticking” on the tenth timeline, the first measurement timeline after the
two and one-half month powered down period. The filter wheel had intermittent
problems rotating on approximately half of the subsequent timelines and during
post-flight testing.

The carousel motor did not find the proper start position on six of sixteen timelines
after power restoration. Of those six timelines, four started with the motor
temperature below 0°C. On two of those six timelines, the carousel position
self-corrected during the timelines and successfully completed the measurement set.
This condition has not reoccurred in post-flight testing.

The major anomalies encountered during the mission are discussed in the following

Sections.

33.1 VUV Lamp Anomaly

The deuterium lamp in the VUV spectrometer did not function during the OPM mission
on Mir. While the other parts of the VUV and OPM system did function, no valid VUV
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lamp was functional during the last pre-flight tests at KSC before the OPM was integrated into
the SpaceHab for launch. The lamp did not function when operated in the first on-orbit
measurement cycle. Post flight investigations by the lamp manufacturer found a leak at the
glass-to-metal seal on the electrical pin/s at the lamp base. This damage could have occurred
either prior to launch or during launch from the induced launch vibration loading on the pins and
socket. The lamp drive electronics were verified to be operating properly during post-flight
testing. A replacement lamp was plugged into the lamp socket and powered up with no problem.

3.3.2 Reflectometer Tungsten Lamp Anomaly

During the last measurement sequence (Timeline 27) made on Mir, and prior to the
retrieval of OPM, the tungsten lamp failed approximately half-way through the reflectometer
measurement set. This was the only anomaly for the reflectometer. Post-flight microscopic
inspection revealed the lamp filament had broken. The probable cause of failure was the bulb
reached its end-of-life due to pre-flight testing. No problems were identified with the lamp drive
electronics. When the lamp was replaced, the reflectometer was able to perform again within
specifications.

3.3.4 Solar Radiometer Anomaly

The solar radiometer failed in June 1997 during a period that the Mir was in a full-sun
orbit. Periodically, the high inclination Mir orbit will precess to where the Mir never goes into
the earth’s shadow. At these times the Mir surfaces become very hot. The radiometers had a
large view factor of these hot Mir surfaces, a direct view of the sun and Mir reflected sunlight.
The solar radiometer was designed to tolerate full sun exposure but not to the additional energy
in this full sun orbit. Data were recorded from this radiometer, but it was not valid.

The solar radiometer anomaly was investigated once the OPM was returned to ground.
The analysis revealed that the thermopile detector was "open." A spare detector was attached to
the OPM cable harness and the OPM DACS was able to record valid data.

The infrared radiometer had a germanium window over the thermopile that did not
transmit much of the solar energy. The infrared radiometer performed without any anomalies.
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40 DATA AND ANALYSIS

4.1 Reflectometer Data

One of the major objectives for the OPM experiment flown on the Mir space station was
to measure the optical effects of the space environmental exposure on a series of spacecraft
external materials. This section will discuss the data and findings for samples measured by the
reflectometer subsystem. All of the samples measured by the reflectometer were applied to
calorimeters and are mostly thermal control type coatings. There were 20 samples flown on the
OPM that were measured by the reflectometer. Table 4-1 summarizes the performance of these
samples on the OPM mission. The solar absorptance readings are calculated from the OPM
reflectometer spectral data. The emittance data in this table was measured pre- and post-flight
with an AZ Technology TEMP 2000.

An Optical Solar Reflector (OSR) sample was included on the OPM carousel for
measurement by the reflectometer instrument. The purpose of flying the OSR was to let it serve
as an in-flight measurement control sample. The OSR sample is a thin second surface fused
silica/silver mirror mounted on the aluminum substrate sample disk of the calorimeter, refer to
Section 2.2. OSR’s have been shown to be very stable in the natural space environment. Any
reflectance change detected on the OSR would be attributed to either spacecraft contamination or
instrument error/malfunction. Figure 4-1 shows the measured spectra for the OSR flown on the
OPM. As can be seen in the graph, the sample was essentially unchanged in-flight and during
post-flight measurements. There may be a slight (<1%) change in reflectance at the knee of the
absorption band at about 400 nm, but this is within the accuracy of the instrument or could be the
result of the very thin ~100 to 180 Angstroms of contamination (see Section 4.1.4 on the TQCM
data and Section 4.3 on the post flight material analysis). The OSR data demonstrates that the
reflectometer operated extremely well and within specifications for the OPM mission. In
addition, it says that there were no significant optical effects caused by contamination that were
measured by the reflectometer. The OSR establishes confidence in the data for the other samples
that did show changes throughout the mission which were dependent upon the changing space
environmental exposure conditions. In other words the changes detected and measured by the
OPM reflectometer subsystem are real changes and not instrumentation errors.

A listing of all of the OPM samples is provided in Appendix A, giving the carousel
position number of each sample, a brief description, the supplier, and the main technical contact.
The minimum and maximum temperatures recorded for each of the 20 calorimeter samples is
listed in Appendix B. In addition minimum and maximum values for the measured solar
absorptance are also shown in Appendix B. Spectral data for all 20 calorimeter samples is
presented in a series of plots in Appendix C. Pre-flight, selected in-flight, and post-flight
measurements are shown. Not all of the flight data is shown since it would be hard to distinguish
between the different scans when plotted on the same chart.
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OPM Reflectometer Flight Data
Optical Solar Reflector
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Figure 4-1 Optical Solar Reflector

The performance of the flight samples including post-flight measurements with time can
be seen from the data in Appendix D, where the calculated solar absorptance is plotted versus
exposure time on orbit and versus the solar exposure in ESH. The reason for including both
plots is that damage sensitivity of material is dependent upon either solar ultraviolet radiation or
on orbit atomic oxygen and in some cases a combination of the two. The atomic oxygen flux
was on a daily basis fairly constant throughout the mission, so a plot of optical properties versus
calendar days or atomic oxygen fluence is equivalent. This is not the case for the solar ultraviolet
radiation. Orientation of OPM on Mir (see Section 3) resulted in very low levels of incident
solar flux during most of the mission except for the approximately two months period after the
Progress docking accident in late June 1997. This is shown in Appendix E in a plot of solar
exposure (in ESH) versus actual dates (in Decreed Moscow time (DMT)). During the period
from late June 1997 until early September 1997, OPM samples saw the largest increase in
accumulated solar flux. This imposed a non-linear exposure between time and solar ultraviolet
radiation. The data is presented both formats which helps in determining whether solar
ultraviolet radiation or atomic oxygen is the dominate environment for a particular material.

As can be seen in Table 4-1 and Appendix C, many of the test materials such as Z93
white paint were very stable for the OPM missions while others changed significantly. Notice
that for many samples there was significant bleaching of the in-space degradation from the final
measurements to the final post-flight measurements in air. This bleaching effect is common to
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many spacecraft materials.'® The bleaching effects and the need for the true history of any

materials degradation including environmental parameters are the major reasons to perform in-
situ space experiments. In addition to these two variables of exposure, solar UV and AO, the
TQCM has shown how the induced environment (mainly contamination) is event driven. All of
these effects clearly demonstrate the absolute necessity of in-space measurements to accurately
determine the level of damage, when it occurred, what caused the damage and to predict when
and if replacement of hardware is required.
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In the following part of this section, the flight data for specific types of samples will be
discussed. Most of the discussion will be concentrated on the materials of the most immediate
significance to the ISS mission. As briefly mentioned before, a few of the samples are
experimental coatings either new materials or modifications of older versions. Some of these
will be discussed also, but only briefly, since more detailed analysis is required to fully
understand their significance.

4.1.1 COR/Silver Triton Sample CR01

This sample from Triton Systems Inc., is a Clear Oxygen Resistant (COR) polymer that is
basically stable when exposed to atomic oxygen. The original polymer was developed by
Langley Research Center (LaRC), then further refined into a product by Triton Systems Inc.,
under contracts with LaRC and MSFC. Upon exposure to AO this polymer forms a glassy type
surface which impedes any further erosion. The original version was the color of Kapton, a
translucent amber. Triton modified the polymer to form a clear version, which was then coated
with silver to form a second surface mirror with low solar absorptance and reasonably high
thermal emittance, see Table 4-1. As can be seen from the data the sample solar alpha increased
during the exposure, also refer to the in-flight data in Appendix D. The physical appearance of
the COR sample after return to the ground, was a very bright specular gold color. It looked like a
gold mirror, but with a slightly lighter gold color. Since this formulation was flown and the
ultraviolet sensitivity was discovered, the formulation has been revised to reduce or eliminate the
ultraviolet sensitivity.'¢

4.1.2 TMS-800AZ Yellow Marker Coating; CR02

The yellow marker coating TMS-800AZ was developed by AZ Technology under
contract with NASA/MSFC. This is a ceramic based coating that can be applied to metal and
non-metal surfaces to provide a bright yellow marker identification color on spacecraft. Previous
ground space environmental testing performed at the MSFC indicated the coating was very stable
when exposed to the space environment including high levels of electron and proton fluxes.

As can be seen from the flight data summary in Table 4-1, the coating had only a very
slight change in solar absorptance from pre-flight to post-flight measurements. Interestingly the
solar absorptance in-space was lower than pre-flight values and seemed to improve slightly with
time. Upon return to the ground and exposure to atmospheric moisture the infrared reflectance
returned to pre-flight values (bleaching affect) resulting in the slight overall increase in solar
alpha. These affects can be seen in the spectral reflectance data in Figure C-2 of Appendix C,
where the infrared had the typical increase in reflectance as the water vapor is leaves the coating
in a high vacuum environment and then recovers after return to the ground. Also in the visible
region a slight reduction in reflectance can be seen. This change is difficult to detect visually
unless compared to the ground control and then the slight change can be detected. This change is
similar to the affect change that occurred during ground testing. This sample was also exposed

54



91-1-118-169
December 31, 1999

on the MEEP/POSA 1 flight experiment'’ for a longer period (18 months) and still retained its
bright yellow appearance even after heavy levels of surface contamination.

4.13 ESD White Coating; CR03, AZWEC-II(MST450-ICW)

This is a experimental coating developed by AZ Technology, that is a electrical static
dissipative white ceramic type thermal control coating. The coating delaminated from its
substrate after 161 days of exposure. Since we had on orbit insitu measurements, we still
obtained valuable information. The coating degraded fairly quickly once exposed, reference
Figure C-3 in Appendix C and Appendix D for the CR-03 sample. The coating did survive the
impact accident, which is advantageous since this provided data including the larger dose of solar
ultraviolet radiation. As seen from the data, the coating stabilized after approximately 50 ESH,
in fact after 700 ESH it appears to recover slightly. In sufficient coating was recovered for
post-flight optical analysis.

4.1.4 Low Alpha White Thermal Control Coating, CR04, AZW/LA-11 MST600-IUCW)

This is a new experimental coating developed under research contract by AZ Technology
sponsored by Wright-Patterson AFB (WPAFB) and managed by J. Sanders and P. Carlin.'®
Ground testing at AZ Technology had indicated good stability which was demonstrated during
exposure on the Mir space station, reference Figure C-4 in Appendix C and data in Appendix D.
The goal was to maintain a solar absorptance below 10% and still have a thermal emittance
above or close to 90%, these goals were met. Other coatings developed under this research
contract are part of a series of formulations that have promise to provide thermal control coatings
with the high thermal emittance and solar absorptance values less than half of this coating.

4.1.5 AZ93P Over MLP-300 Primer, CR06, AZ93/MLP300

As can be seen from the data in Appendix C and D, this coating is very stable. In fact the
spectral data shows clearly that this while on orbit was as stable as the control sample (OSR).
This coating is the standard Z93P coating manufactured by AZ Technology, but applied over a
primer which was developed by AZ Technology to enhance the bonding of Z93 type coatings to
aluminum and non-metallic substrates. The goal was also to provide a means of applying Z93
type coatings with personnel having less skill, since 793 type coatings applied directly to
aluminum require considerable skill and experience to be successful. Flight data demonstrates
that no detrimental affects occurred by using this primer.

4.1.6 AZ93 with a Teflon™ Overcoat, CR07
This sample is the standard AZ93 manufacture by AZ Technology but with a special

Teflon type overcoat. The purpose of the overcoat was to provide a temporary cover for the
AZ93 coating for ground handling. Since Z93 type ceramic coatings are very porous they are
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susceptible to ground handling contamination. This coating fills in the voids on the surface of
the porous ceramic thereby preventing contamination infiltrating the porous structure. Since
contamination does not bond well to Teflon, the surface contamination can be removed with
ordinary solvents prior to flight. In addition, the Teflon is sufficiently transparent as not to
significantly change the starting solar absorptance. Ground tests at MSFC by R. Kamenetzky
have shown that the Teflon is eroded off of the AZ93 fairly quickly. The data shown in
Appendix D for CRO7 show that towards the end of the exposure the solar absorptance was
starting to return to its initial on orbit value. This particular Teflon formulation degrades under
solar ultraviolet radiation as seen in Appendix C, Figure C-7, but eventually the AO will remove
it the coating will return to its original value. The post-flight material analysis as discussed in
Section 4.3.2 shows that the Teflon coating was slowly being removed, but the Teflon further
into the porous structure was coming off even slower. The apparent difference in recovery rates
between the MSFC tests and the flight data may be explained by the synergism between AQ
fluence and solar ultraviolet fluence on the erosion rate of Teflon. This particular formulation
has not been investigated enough to understand this relationship, but it should be noted that the
tests at MSFC utilized their 5¢V AO source which has a high flux of AO but also includes a very
large flux of vacuum ultraviolet radiation. In comparison to the exposure on Mir which while
having a reasonable AO fluence was very low in solar ultraviolet fluence.

4.1.7 TP-co-2 & TP-co-12 ZnO Silicate & Glass Base; CR08 and CR09

Both of these samples were provided by Naumov/RSC Energia. They are similar to the
Z-93 type coatings. The Russian coatings performed basically identical to the Z93 and AZ93
coatings as would be expected from their similar formulation and past performance on Russian
spacecraft. As for the AZ93/CR06 and Z93P/CR16 these coatings were very stable with changes
in solar absorptance within instrumentation error.

4.1.8 Anodized Aluminum Samples; CR10, 11, 14, and 15

Spectral reflectance data for the anodized aluminum samples flown on OPM are plotted
in Figures 4-2 through 4-4. These samples were provided by Boeing Company and are
aluminum conversion coatings being utilized on the International Space Station. The Chromic
Acid Anodize (CAA) and Boric Sulfuric Acid Anodize (BSA) samples were provided by Dr.
Gary Pippin of Boeing Seattle, while both of the Sulfuric Acid Anidize (SAA) coatings were
provided by Mark Hasagawa, of McDonnell Douglas Company, now Boeing Huntington Beach.

The OPM performed reflectance measurements 27 times over the 8-month mission. Data
is provided for the anodized samples in Tables 4-1 and -2, only for the initial ground scan, the
initial in-space measurement, on orbit day 237, and post-flight (68 days after return to ground).
Reference Table 4-2, which lists the solar absorptance values calculated from the reflectance data
in Figures 4-2 through 4-4. All of the solar absorptance data is provided in Appendix C and D.
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In general, the anodized samples degraded more than was expected. The SAA on
Aluminum substrate 2219-T851 degraded almost twice as much as the other anodized aluminum
surfaces. Since all samples received the same amount of contamination (150 to 180 Angstroms)
and since the OSR sample showed very little change due to this level of contamination, the
degradation observed results from the natural space environment. Since the samples only
received 832 ESH’s of solar ultraviolet radiation, compared to a typical 2000 ESH per year, this
degradation was much greater than expected. Sadly the OPM data for the mid-point of the
exposure period was not taken because of Mir power problems after the collision accident.
Without this midpoint data, it is very difficult to accurately predict the long term degradation of
the coatings based on this limited data. Certainly a straight line estimation can be made, but this
would lead to excessive predictions of degradation. Either long term ground testing is required
or a re-flight of the OPM is required to obtain the necessary data to predict long term degradation
of these coatings.

Another finding that is of interest is shown in Table 4-2, listed in the right two columns.
Results of reflectance measurements are summarized for day 68 afier OPM was returned to the
ground. Note that the BSA sample had significant bleaching, over 4%. Although the magnitude
of the bleaching effect is not nearly as great as for ZnO pigmented coatings®, it again
demonstrates the importance of insitu or in-vacuum optical measurements.
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Figure 4-2.  OPM Reflectometer Flight Data
Chromic Acid Anodized 6061 Aluminum Alloy
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Table 4-2. Solar Absorptance Values for Anodized Samples
Sample Initial o Day 237 Aag Acg/ag (%) | Post Flight Post Flight
on orbit o +68 days | Recovery (%)
CAA on Al 0.361 0412 0.051 14 0418 LS
6061
BSA on Al 0.360 0.431 0.071 19 0.412 44
6061
SAA on AL 0.424 0.477 0.053 13 0.477 0
7075
SAA on Al 0.393 0.514 0.121 31 0.508 1
2219-T851
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Figure 4-3.  OPM Reflectometer Flight Data Boric-Sulfuric

Anodized 6061 Aluminum Alloy
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4.1.9 Chem Film Sample, CR12

This sample behaved very similar to the anodized samples. The sample coating was
provided by P. Dano of Rocketdyne. Reference Figure C-12 in Appendix C and data in
Appendix D for the flight data on CR12. Further post-flight analysis is anticipated by the sample
supplier which should be published in the open literature.

4.1.10 Z-93CIMS55 White Coating, CR13

This is a another experimental type coating provided by M. Deshpande of IITRI which is
modified Z93 type coating. Referencing the data plots in Appendix C and D, the coating appears
to be not quite as stable as the other standard Z93 type coatings (CR06 and CR16). The solar
absorptance does appear to stabilized at less than 14%. Further analysis by the sample supplier
investigator is anticipated and will be published in the open literature.

4.1.11 Uncontaminated Flight Control Z93P, CR16 and Pre-Contaminated Z93P Thermal
Control Coating, CR17, 18, 19, And 20

One set of samples with significant importance for the ISS is the pre-contaminated Z93P
white thermal control coating samples. Z93P is the coating for the large ISS Active Thermal
Control System (ATCS) radiators and its optical properties must remain stable for the required
ten-year lifetime. Z93 samples were pre-contaminated with either silicone or Tefzel offgassing
products. These contaminants were photofixed with UV irradiation which prevented cross
contamination of other flight samples. These samples were also pre-damaged with 5000 ESH of
VUV irradiation. Refer to Section 4.4 on a discussion of the Contamination results for a detailed
description of these samples, objectives, and findings. Briefly it is sufficient to mention here that
the original objective of these samples was to determine if and the magnitude that atomic oxygen
would be affective in removing heavily contaminated surfaces of Z93P with both silicone and
Tefzel offgasing products. These surfaces also had a large fluence of simulated solar ultraviolet
radiation to simulate potential long term accumulation of contamination during the ISS mission.
Results of this experiment provide other interesting results as is discussed in detail in Section
44, :

Figures C-17 through C-20 in Appendix C show the spectral reflectance data for the
Tefzel and Silicone pre-contaminated Z93P samples. Figure 4-6 shows the comparison of the
solar absorptance data for the uncontaminated Z93 and the “2000” Angstrom pre-contaminated
samples. This data starts with the uncontaminated Z93P samples up through post-flight ground
measurements. Note that the uncontaminated Z93 was very stable for the mission. The Tefzel
contaminated sample degraded (increased solar absorptance) significantly early in the mission
followed by a marked improvement later in the mission. In fact, the post-flight solar absorptance
value was slightly lower (better) than the pre-flight value. The silicone contaminated sample did
not degrade as quickly as did the Tefzel sample but continued to degrade for the complete
mission. The reason for the recovery of the Tefzel contaminated sample is believed to be due to
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the erosion of the Tefzel contaminant layer by the incident AO. Fluorocarbon polymers are
susceptible to erosion by AO where silicone contaminants are converted to a non-volatile silicate
by AO and solar UV. The incident AO fluence is believed to be sufficient to erode away the
Tefzel contaminant.

The long term post flight bleaching affect even on these contaminated surfaces continues
for an extended period as can be seen in Figure 4-6. Nommally bleaching affects are rapid."?
This long term or extended bleaching affect was unexpected. This data further demonstrates that
the chemical mechanisms of material degradation are extremely complex and interesting. Also,
the varying behavior in space with time clearly defines the requirement for in-space insitu
measurement in order to obtain accurate data to understand the damaging mechanism behaviors
that occur in a true combined space environment.
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4.2 Total Int ted Scatter (TIS

The OPM mission was the first time that TIS measurements had been performed in
space.”’]g’zo The TIS instrument provided excellent measurements during the mission to Mir.
Twenty TIS sample were flown and exposed on the carousel. Optical measurements, including
TIS, were performed at weekly intervals while OPM was deployed and was powered. In addition
to flight measurements, these samples were characterized prior to flight and then re-measured
post flight. Appendix A and Appendix K, Table K-1, provide a listing of these samples along
with a sample description and the sample supplier. Table K-1 provides detailed information
including all identification numbers relating to each TIS sample. The samples were protected
before and after the OPM deployed mission. This was accomplished by rotating the sample
carousel to the closed position inside the OPM enclosure. This protected the samples from direct
damage, but was not a hermitic sealed enclosure. The samples were still exposed to temperature,
humidity, etc. inside the MIR. TIS was measured at 532nm and 1064nm before flight, during
exposure in LEO, and post-flight.

In this Section, the results for the OPM TIS samples will be discussed. In Appendix K
graphs are shown for the TIS flight data versus exposure time for 532 nm, for 1064 nm, and for
the 532/1064 ratio of TIS values. Tables of TIS measurements, thermal emittance, and solar
absorptance are also presented in Appendix K. Table 4-3 is a summary of the OPM TIS data for
the twenty TIS samples. Detailed interpretation of the TIS sample results will be left to the
sample supplier, to be published in the open literature.
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4.2.1 Sample Selection

Samples flown for TIS evaluation were chosen from three categories: optical samples,
engineered scattering surfaces, and engineered materials. For the purpose of evaluating the
measurements, the samples were categorized into four groups based on the preflight TIS values
(Table 4-4). All of the optical samples are contained in the TIS “Lowest” category and have the
least amount of scatter. The engineered materials are spread through the other three categories.
The “controlled scattering” surfaces, supplied by the Naval Air Warfare Center (NAWC), are
spread throughout all categories. The graphs in Appendix K are grouped by these categories.

Table 4-4. Sample Categories Based on Preflight TIS Values.

Lowest Low Medium High TIS>.5
TI1S< 0.002 .002<TIS<0.01 J01<TIS< 0.5
STO1 STO3 STO08 (1064 nm) STO7
STO2 ST12 ST10
STO04 ST14 ST20 ST11
STO5 ST1s
ST06
STO8 (532 nm) ST17
STO9
ST13
ST16
ST18
ST19

4.2.2 Overall Results

In addition to TIS measurements, the samples were evaluated on Nomarski microscopes
and some on an Atomic Force Microscope (AFM). Nomarski microscopes from the UAH and
from NAWC were used. The AFM was located at Digital Instruments. The purposes of the
Normarski investigations were to characterize the particulate contaminate and to chose areas to
measure with the AFM. The TIS co-investigator, Dr Bennett, used the AFM to validate the TIS
measurements and to provide more detailed interpretation of the TIS sample results for a later
journal publication.

The 532 nm scatter for most samples increased slightly for the first on-orbit measurement
relative to the initial preflight values. Then there was a slow decrease over the next 5 weeks
before the general gradual rise that continued for the rest of the flight. During the same period,
the 1064 nm scatter did not show the initial rise and gradual decrease, only a slight upward rise to
week 9 and then a slower constant rise for the rest of the period. One possible explanation for
the increased 532 nm scatter may have been molecular contamination during shipping, launch,
and/or MIR onboard storage prior to deployment which was then partially cleaned off upon
exposure to the space environment.
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Post-flight inspection and measurements of the TIS samples show particle contamination
on all surfaces. The films were nearly particle free when they were loaded into the carousel and
tested before the flight. The Figures in Appendix K show this effect. Note that the 1064nm
scatter, which is more sensitive to particles than the 532nm scatter!'?), changed very little during
the flight, indicating that very few particles settled on the samples during exposure to the space
environment. The major increase in the 1064nm scatter occurred after the flight, so that is likely
when the particles accumulated on the samples as seen in post-flight inspections. Figure 4-7
clearly shows the large increase in the 1064nm scatter from the last on orbit measurement to the

post flight measurement. The samples in Figure 4-7 are ordered based on increasing preflight
TIS values for 532nm.

100%

Percentage Change in TIS from wesk 33 to Post-Flight

Sampie Number

Figure 4-7.  Last Space Measurement versus Post-Flight Ground Measurement

Many of the samples were either transparent or partially transparent at one or both
wavelengths, so the TIS values could not be converted into effective rms roughness. Rms
surface roughness was calculated for the magnesium fluoride coated aluminum mirror and the
platinum mirror. The values are reported versus AFM measures in Table 4-5. The rms deviation
for ST18-01 is due to possible recrystallization and is discussed in the sample section.
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Table 4-5. Comparison of TIS Calculated RMS With AFM Determined RMS

Sample Serial | Description 1064 TIS RMS | AFM RMS
No. Angstroms Angstroms
ST18-01 AVMgF2 mirror | 34.6 48.6
Flight sample
ST18-02 Al/MgF2 mirror | NA 37.0
Backup sample
ST19-01 Pt mirror NA 383
Backup sample
ST19-02 Pt mirror 38.5 30.0
Flight sample

Some changes were seen due to the LEO environment. As expected, Kapton eroded due
to AO exposure. Other samples based on carbon and nitrides showed severe susceptibility to AO
erosion. Three of the TIS samples were severely degraded. Only clumps of initially uniform
films remained on the exposed surfaces of the carbon nitride (CN) film as can be seen in the
AFM image in Figure 4-8. Silver Teflon did not reach the threshold level necessary for
significant erosion. In general, direct solar ultraviolet radiation exposure was minimized due to
OPM/MIR attitude (see Section 3.2). However there was significant solar exposure on the OPM
samples for the two-month period following the Progress accident. This may account for some
of the step changes seen between weeks June 24 and September 13, 1997 (Weeks 9 to 20).

Solar absorptance and room temperature emittance was measured both preflight and
post-flight for the TIS samples. The emittance measurements did not show significant changes
for most TIS samples. Solar absorptance, on the other hand, indicated sample degradation when
pre- and post-flight TIS measurements did not. See the discussion of sample STO3 later in this
section. In general the solar absorptance was not useful for the low to lowest scattering samples
except when there was sample decomposition. For the high scattering samples, the change in
reflectance was sometimes more telling than the change in TIS.

The impact of storage inside the MIR was minimal despite the high humidity and smoke
that was present during storage. The first space measurements on April 29, 1997 are not too far
off from the preflight baseline measurements taken October 17, 1996. The OPM was stored just
over 3 months inside the MIR. After deployment, evidence of the collision with the Progress
module is seen by the unidirectional scratch marks under the protected areas of the samples.
Similar scratch marks were present on samples across the carousel. These marks did not enter
the measurement areas, and no TIS aberrations could be directly attributed to the collision.
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- o, 1
ST12—0W, CN, Flight, Center
Protected Exposed
7.4 x 102 AO Atoms/cm?
732 ESH Solar UV

{

Figure 4-8.  AFM Image of ST12 Showing CN Islands Left After AO Erosion

The 1064 nm calibration factors averaged 1.400 running within the expected 1.3 to 1.5
range. The 532 nm calibration factor ran higher and was stable around 1.550. There was less
variance in the 532 values. This is thought to be due to a heater that is incorporated in the 532
nm laser for the frequency doubler. The only bad sample points that can really be tagged to
temperature occur in week 24 when the 1064 laser temperature dropped to -5 °C. Erratic
measurements are recorded at this time. This is most likely due to thermal drift from the time
that the calibration is done until the samples are measured. Measuring the entire twenty samples
takes about 2 hours.

The significance of the above discussion is that the overall instrument operation was
validated and good TIS value measurements of the sample were obtained. Just as Important,
because of in-flight measurements, it was proven that most of the particulate contamination
occurred after the OPM was packed up for return to Earth, not during on-orbit exposure to the
space environment. No indications of misalignment or any other component failures were seen.

423 Specific Sample Results

4.2.3.1 USAF Research Laboratory Sample (STO01. ST02)

ST1-01 Niobia on Silica: This sample was composed of 18 pairs of Nb,Os and SiO,
films and a final Nb,Os film on a fused silica substrate. This sample had the lowest 532nm
scatter of the 20 samples. The scatter value rose more or less uniformly throughout the flight.
The pre-flight value at 1064 nm was fourth from the lowest. The scatter increased more or less
uniformly throughout the flight, but doubled from the last flight measurement to the post-flight
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measurement. Investigation with the Nomarski microscopes revealed that the flight sample had a
partial coverage of particles, one large scrape mark near the center, lint, and some small drops of
dried liquid, mostly near the edge. The control sample (ST1-04) was nearly particle free. The
AFM images of the flight and control samples were essentially identical with rms roughness
values of 1.42nm and 1.22nm, respectively. The AFM image of the flight sample contained one
large particle which would have slightly increased the rms value. Undoubtedly the 1064 nm
scatter increased because of contamination on one or more of the measurement spots. In
summary, the small TIS increases were caused by particle contamination rather than film
degradation. Solar absorptance was unchanged. The multilayer coatings withstood the space
environment well.

ST2-01 Zirconia on silica; This sample was composed of 22 pairs of ZrO, and SiO,
films and a final ZrO, film on a fused silica substrate. Both flight and control samples were
provided for the post-flight inspection. The zirconia sample had a larger 532nm scatter than the
niobia coating (but there were more layers which would tend to increase the scattering). The
zirconia sample had the lowest 1064 nm scatter of the 20 samples. This is surprising because one
would expect the infrared scatter also to be higher because of the increased number of layers.
The TIS at both wavelengths uniformly increased during the flight, but the slope of the increase
at 532nm was smaller than for the niobia coating. At 1064nm TIS increased moderately.
Nomarski microscope inspection revealed that the flight sample had fewer particles than the
niobia sample, while the control sample (ST2-04) was nearly particle free. However, the China
Lake Olympus Nomarski microscope showed that the surface texture was slightly more
pronounced than for the niobia sample. The AFM images of the flight and control samples
looked essentially identical with rms roughness values of 2.79nm and 2.73nm, respectively (a
Jarge particle on the image of the flight sample was deleted from the roughness measurements).
Both of these samples were rougher than the pair of niobia samples, in agreement with the visual
Nomarski microscope observations. Solar absorptance was unchanged. In summary, this
coating withstood the space environment well.

4232 NAWC Samples (ST03 — ST13)

All the silicon substrates used for the NAWC films were polished by General Optics.
They were single crystal, (100) orientation, 0.125 inches thick, flat to one-quarter wave or better,
and had an rms roughness of ~ 5 A.

ST3-01 Diamond-like carbon on_silicon, NAWC: The initial TIS measurements
showed that the film had a somewhat higher scatter than the lowest scatter films. The first space
measurements showed large scattering increases of more than 2 times in the visible channel and
about 7 times in the infrared channel. The TIS values continued to increase with large
fluctuations up to a maximum of 0.016 in the visible and 0.0093 in the infrared for week 9, then
dropped to low values close to the initial readings at week 20. (No measurements were made
during the intervening period.) Both visible and infrared scatter levels remained low for the rest
of the measuring period, and the post-flight TIS values were only slightly larger. The Nomarski
micrographs showed a large difference in the character of the film between the exposed region
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and the protected region around the edge of the sample where the film had been under a Teflon
retaining ring. In addition, the China Lake Olympus microscope showed what appeared to be a
roughened region in the form of a partial ring on one side close to the edge. It looked as though
the sample surface was shadowed from the full space exposure in this region (see Figure 4-9 A
and B). The AFM images were quite different in the three regions. At the sample edge where
the film was protected, it looked uniform and had an rms roughness of 4.44nm. In the exposed
region there appeared to be clumps of the film remaining on a nearly bare silicon substrate,
suggesting that most of the film had been eroded away by atomic oxygen. The roughness was
21.7om mms. In the shadowed region, the film appeared to be deeply pitted, as though it was
starting to be eroded away. The roughness was the highest in this region, 38.2nm rms. All the
measurements suggest that the film started to be eroded immediately after it was exposed to
atomic oxygen in space, and that the erosion process was essentially complete by week 20. After
that, the scattering at both wavelengths was caused by unreacted clumps of diamond-like carbon
remaining on the silicon surface.

The film of the diamond-like-carbon, sample ST03, has similar TIS values to the silicon
substrate underneath. During flight the TIS value rose as described above, but when the sample
eroded away TIS value dropped to a post-flight value that was similar to the preflight value. The
change in solar absorptance picked up this change in preflight versus post-flight measurements.
Solar absorptance dropped 25 percent. Emittance dropped 13 to 14 percent from preflight to
post-flight, but the emittance generally shows less change relative to other TIS measurements.

ST4-01 Titaniuim diboride on silicon, NAWC: The TIS in the visible was initially
low, but increased by 50% during the first space exposure, continued to increase in week 2, then
gradually decreased until week 5, after which the scatter level gradually increased during the
period of exposure in space. The post-flight TIS measurement increased by a modest amount.
The infrared TIS scatter trend was quite different. The initial scatter was also low, and more or
less uniformly increased during the entire space mission, but the post flight value was nearly
twice the last value in week 35 in space. With the exception of numerous particles on the film
and one dried liquid mark, the surface was featureless. The film was not photographed in the
China Lake Nomarski microscope and no AFM images were taken. Further work will be done on
this sample at China Lake.

STS-01 Zirconium diboride on silicon, NAWC: The TIS values in both the visible
and infrared were initially lower than those of the titanium diboride film. On the average, both
the visible and infrared TIS uniformly increased throughout the space flight, and hardly increased
after the flight. The surface was featureless except for particles. The film was not photographed
in the China Lake Nomarski microscope and no AFM images were taken. Further work will be
done on this sample at China Lake.

ST6-01 TiBN on silicon, NAWC: It had similar scatter characteristics to films of niobia
on silica, ZrBN on silicon, and zirconium diboride on silicon. Both scatter channels increased
slightly during the flight, probably caused by accumulation of particles. The post flight visible
TIS increased somewhat, and the infrared TIS nearly doubled relative to the last space
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measurement. The surface was featureless except for particles. No AFM images were taken.
Further work will be done on this sample at China Lake.

ST7-01 CVD diamond on silicon, NAWC: The three CVD diamond films were all
very rough and had high scatter because of the large crystallites in the polycrystalline films. The
TIS levels did not change at the beginning of the flight and remained essentially constant
throughout the flight, as well as for the post flight measurement. There were no obvious
differences in the film structure in the exposed and protected regions. The film looked
exceedingly rough everywhere. No AFM images were taken. Step height measurements will be
taken between the protected region under the gold film and the exposed region to see if any of
the film was removed by the atomic oxygen.

ST8-01 TiBO on silicon, NAWC: With the exception of the TiN film, the initial TIS
value was the highest of the low scatter samples. The initial scatter in the visible dropped to
0.00128 for the first exposure in space and continued to drop to a minimum of 0.000935 (week
5), then increased and oscillated around 0.002 during the rest of the flight. The infrared scatter
increased dramatically, first to 0.00679 (week 1) and then to 0.0150 (week 2), and 0.0207 (week
3). It continued to rise and then erratically rose and fell throughout the rest of the flight. The
maximum value measured in flight was 0.0599 for week 27, but the post-flight value was much
larger. The film was nonuniform in thickness across the sample, as evidenced by the color
gradations, and in addition had a different color under the ring at the edge of the sample. There
may have been a particle in the field of view of one measuring spot. There were many circular
features (sizes 1um to 40pum) on the surface that may have been dried spray. In addition, there
was a discolored brown area in the outer ring on one side and two bubbles ~30pm diameter. The
Nomarski micrographs emphasized the color differences on different parts of the sample and a
displaced outline of the gold half-moon area suggested that some or all of the film had been
eroded away (see Figure 4-9B). The AFM images showed that the center exposed region was
dominated by many small contamination particles, giving an rms roughness of 0.79nm. Two
AFM images were taken in the edge region, opposite each other. The film was very smooth on
one edge, 0.33nm rms, but appeared to have a longer range mottling with a spacing ~0.5um. On
the opposite edge, the film appeared to be more blotchy with a slightly shorter spacing and a
larger roughness, 0.75nm rms. Since the initial film was nonuniform, the variations between the
two opposite edges may simply represent differences in the initial film roughness. There is a
strong possibility that the entire film was eroded away in the central region and only the particle-
covered silicon remained; this guess will be confirmed after part of the gold mask is removed and
the film is profiled to see if there is a step.

ST9-01 ZrBN on silicon, NAWC: The first flight scatter value was 0.00108 at 532nm,
but subsequent scatter values dropped to 0.000878 (week 3) and then rose again. The infrared
values were quite similar. The film was uniform with a light particle coverage similar to the
other samples. No AFM images were taken. Further measurements will be made on this sample
at China Lake.

71



91-1-118-169
December 31, 1999

ST10-01 B-doped CVD diamond on silicon, NAWC: The TIS 532 nm values were
very similar to those for the undoped CVD diamond film, but the 1064 nm values were very

constant at a level of 0.951 — 0.954. There were no obvious differences in the film structure in
the exposed and protected regions; the film looked exceedingly rough everywhere. No AFM
images were taken. Step height measurements will be taken on this film that are similar to those
to be taken on the other CVD diamond films.

ST11-01 P-doped CVD diamond on silicon, NAWC: The 532 nm scatter remained
constant at 0.994 from the initial measurement, throughout the space flight, and for the post-
flight measurement. The 1064nm scatter held nearly as constant at values between 0.854 and
0.863. There were no obvious differences in the film structure in the exposed and protected
regions; the film looked exceedingly rough everywhere. No AFM images were taken. Step
height measurements will be taken on this film that are similar to those to be taken on the other
CVD diamond films.

ST12-01 CN on silicon, NAWC: The film had an initial moderate scattering level of
0.00909 at 532 nm, but it immediately increased to 0.0145 during the first week’s exposure in
space. After that it oscillated and finally decreased to a level close to 0.0038 (week 7) where it
remained for the rest of the flight and post flight. The scattering level at 1064 nm behaved in a
similar manner. The maximum increase (0.0389) occurred at week 3, but the scattering level
then dropped gradually to 0.00279 at week 9 and remained at a slightly lower level, ~0.002 for
the rest of the flight and post flight. In the Nomarski micrographs, there was a significant color
difference between the central exposed region and the protected edge. In addition, there were
several blotchy areas with small point-like centers, whose dimensions ranged from 8 to 400um.
The AFM image of the center showed clumps of material, similar to those at the center of the
diamond-like carbon film, ST3-01, except that the clumps on the CN film were more dense. The
roughness was 32.9nm rms, larger than for the diamond-like carbon film. At the two protected
edges on opposite sides of a diameter, the CN film was uniform but contained particles. The
roughness on the AFM images were 0.923nm rms and 1.119nm rms, respectively. The particles
and also some residual polishing scratches on the silicon surface made these roughness values
somewhat larger than the intrinsic roughness of the initial CN film. It is clear that much of the
CN film had been eroded away by atomic oxygen and that only clumps of CN material remained
in the exposed area. Solar absorptance revealed this erosion with a 17 percent decrease from
preflight to post-flight.

ST13-01 Titanium nitride on silicon, NAWC: The film had a rather large initial
scattering level at 532nm, and the scattering increased during the first few weeks in space.
Following week 9, the scattering level behaved erratically during the rest of the flight, rising to a
value of 0.00353 at week 25 but then decreased to the post flight value. The initial infrared
scattering level was about average for the scattering levels of the NAWC dielectric films. The
level remained nearly constant during the flight and increased slightly to the post-flight
measurement. The film appeared to be uniform in both Nomarski microscopes, but the exposed
area was slightly darker than the protected area; the particle density was lower than on some of
the other films. The AFM images of the center and the protected area at the edge showed a dense
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film which looked identical in both places; the rms roughness were essentially identical, 6.79nm
at the center and 6.44nm at the edge. One possible explanation for the erratic behavior of the
scattering level in the visible channel is that there was a large particle at the edge of the
illuminated spot which added appreciable scatter when it was in the field, but the sample shifted
slightly during the flight. Perhaps the illuminated spot for the infrared channel did not include
the particle. Solar absorptance increased 4 percent over the exposure period. In summary, the
TiN film did not seem to be affected by the space environment

(A) - ST3-01

(B) — ST8-01
Figure 49. Nomarski Micrographs of (A) ST3-01 and (B) ST8-01
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4.23.3 NASA Glenn Research Center Samples (ST14 — ST15)

ST14-01 Levelized Aluminum Mirror: The surface had a distinctive “orange peel”
appearance, and would make a poor imaging optical surface. The initial 532 nm scatter level
was close to that of the NAWC CN film and considerably higher than the scatter level for the
MgF, overcoated aluminum mirror. The scatter levels in flight were erratic but there was no
increase. The post-flight scatter was close to the initial value. The initial scatter level at 1064
nm was much higher than the initial scatter level of the MgF, overcoated aluminum mirror.
During the flight the scatter level changed erratically but did not increase appreciably up to week
35, where the level was slightly lower than the pre-flight value; however, the post-flight value
was considerably higher showing a similar increase to that of the MgF, overcoated aluminum
mirror. Examination in the UAH Nomarski microscope revealed one large dried liquid drop
away from the TIS measurement areas, various scrape marks (some of which could have been on
the sample when it was submitted), and numerous particles. The dominant feature was the very
obvious orange peel surface texture which would have caused the specularly reflected beam to
shift and possibly to slightly impinge on the collecting hemisphere. In this case, the TIS values
would increase. Probably all the changes with the exception of the post-flight increase in the
1064 scatter level can be explained by the non-optical sample surface. No AFM images were
taken. In summary, the space environment apparently did not affect this sample.

ST15-01 ISS Solar Blanket Face Sheet: This was a thin sheet, like aluminum foil with
parallel scratches, possibly from the rollers used to make the sheet. The exposed side was
blackened to act as a solar absorber. The blackened surface had a very high scatter at both
visible and infrared wavelengths. The 532nm scatter increased to 0.996 after the first week of
exposure in space, and remained high, with oscillations, for the rest of the flight. The post flight
scatter was very close to unity. The initial 1064nm scatter rose to 0.999 after one week exposure
in space. The scatter remained high, with oscillations, throughout the flight, and the post flight
value was 0.999. This sample had the highest scatter in the infrared and nearly the highest
scatter in the visible of the 20 samples. With the exception of the initial preflight TIS values, the
ratio of the visible to infrared scatter remained at unity all during the flight and for the post flight
measurements. This was the only sample that had a ratio of 1 for the scatter from the two
wavelengths. The sheet was so thin that it curled, making it difficult to look at under the
Nomarski microscope. The material was quite rough, which is the reason it had such a high
scatter. No AFM images were taken. Solar absorptance decreased 3 percent.

4234 AZ Technology Samples (ST16 — ST20)

ST16-01 Gold mirror: The sputtered gold film on a fused silica substrate was intended
to be a control. The initial scattering level at 532 nm was at the upper end of the low scatter
coatings. The scattering gradually increased during the space mission, and the final post-flight
value was not significantly higher than the values in space. The initial 1064 nm scattering value
was at the high end of the low scatter samples. As with the visible channel, the infrared
scattering gradually increased during the space mission and was only slightly larger than the last
scattering level measured on week 35 in space. Inspection in the Nomarski microscope showed
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particles on the surface, similar to those on the other samples. No AFM measurements were
made on the mirror. It is probable that the gold mirror did not degrade in the space environment.

ST17-01 Kapton H: Four layers of 5 mil thick Kapton, were mounted in the sample
holder; however, the exposure in space affected only the top sheet, which darkened appreciably.
The lower sheets appeared to be unchanged from their initial condition. Since the material is
transparent, the TIS before space exposure represents scattering from all of the sheets. After one
week in space the 532nm scatter rose to 0.921 and continued to increase throughout the flight.
At 1064nm, after one week exposure in space, the scatter was only slightly larger than preflight
levels. During the flight the scatter oscillated between a high of 0.943 (week 35) and a low of
0.914 (week 9). The post-flight value was slightly higher. The NAWC Nomarski microscope
showed that the film in its initial condition was lumpy, like a dried gummy plastic material, with
numerous scratch marks crossing the surface; some parallel scratch marks may have been from
the rollers forming the sheet. After exposure, the surface darkened appreciably, but the gummy
texture appeared to be about the same. In some places around the edge there was a gradation in
the darkening, possibly caused by shadowing of the sample from the full exposure to the space
environment. When the Kapton sheet was examined in the AFM, the unexposed region around
the edge showed parallel grooves at various orientations, probably caused by marks on the
rollers, and a smaller texturing underneath the marks. The roughness was 3.90nm rms. It was
very difficult to profile the exposed region. In the best attempt, the measured roughness was
122.95nm rms. As expected, the Kapton film had changed drastically due to AO exposure.
Solar absorptance increased from 0.76 to 0.92 over the exposure period. This was a 16 percent
increase.

ST18-01 MgF, Overcoated Al Mirror: This MgF, overcoated aluminum mirror on a
fused silica substrate was also included as a control sample. The initial 532 nm scattering level
was 0.00131, as expected for this type of sample. During the flight the scattering level gradually
increased, with about the same slope as for the gold mirror. The post-flight level was 0.00191,
only slightly larger than the week 35 value measured in space. The initial 1064nm scattering
level was 0.000824, in the middle of the low scatter samples. During the flight, the level
increased slightly, reaching 0.00113 on week 35. However the post-flight scattering greatly
increased to 0.00167, which is similar to the increases shown by the NAWC boron-containing
films. This large increase, which did not show in the visible channel, may have been caused by a
light coating of particles that were of a size to affect the infrared scattering much more than the
visible scattering channel. Inspection in the NAWC Nomarski microscope showed isolated
particles on the control film, and a slight increase in particles on the flight sample, with about the
same concentration of particles on the surface as were on the gold mirror. The AFM image of
the control sample showed numerous small particles, possibly from defects in the MgF, film,
giving the sample a roughness of 3.70nm rms. The flight sample had many more defects in the
same size range, with an increased roughness of 4.86nm rms. Some of the particles were
probably caused by the contamination that was on all the flight samples, but possibly the MgF,
film also partially recrystallized.
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ST19-02 Platinum Mirror: This platinum coated fused silica mirror was also included
as a control sample, since similar platinum-coated mirrors have been flown on numerous
previous space missions. The initial 532nm scattering level was 0.000939, as expected for this
type of mirror. During the flight the 532nm scattering level gradually increased, with a slightly
smaller slope than for similar samples. The post-flight scattering level of 0.00160 was only
slightly larger than the week 35 scattering level. The initial 1064 nm scattering level was
0.000745, as expected for this type of sample. The 1064 nm scattering level gradually increased
during the flight, with the same slope as that for the other low scatter samples, and reached a
value of 0.00115 at week 35. There was a large increase in the post flight value, 0.00207, the
same as was observed for all of the other low scatter samples with the exception of the gold
mirror, and the NAWC zirconia and zrconium diboride films. The NAWC Nomarski
microscope images of the flight sample and the control sample showed no differences in the
structure of the film, except that there were more particles on the flight sample and scratch marks
around the edge from mounting the sample in the Teflon holder. AFM images of both the flight
sample and control sample looked similar except that the flight sample appeared to be slightly
smoother, 3.00 nm rms roughness, than the control sample, 3.82nm rms. The sizes of the grains
in the two films appeared to be about the same. In summary, the space environment apparently
did not adversely affect the platinum film.

ST20-01 Silver Coated Teflon: This sample is a second surface mirror with the outer
layer a 5 mil Teflon (FEP), coated on the underside with Silver and then a protective layer of
Inconel. The surface quality was poor in TIS terms. It was not possible to obtain a specular
reflection from the sample and there were wavy parallel cracks across the entire surface as well
as numerous scratch marks. This is typical for this material. The center portion of the sample
was raised relative to a circular ring at the edge that had been under the Teflon retaining ring in
the sample holder. The scatter level rose to 0.179 after one week’s exposure in space. After that,
the values oscillated from a high of 0.183 (week 5) to a low of 0.139 (week 28). At 1064 nm TIS
remained nearly constant throughout the flight, with maximum and minimum values of 0.0533
(week 3) and 0.0400 (week 28). A possible explanation for the erratic 532nm scattering level
compared to the constant 1064nm scattering level is that there may have been a slight
misalignment of the two beams such that the visible beam striking one of the sample areas was
on the edge of a crack and slight shifts of the beam and/or sample caused large fluctuations in the
reflected and scattered signals, while the infrared beam was on crack-free sample areas. The
UAH Nomarski microscope showed the above mentioned cracks and sample waviness which
dominated the scattering. Particles were also present, but their contribution to the scattering was
smaller. The sample was not imaged in the AFM. Preflight and post-flight solar absorptance did
not give any incite to this sample. In summary, it is probable that this sample was not affected
by the space environment.

4.2.4 Summary of TIS Subsystem Experiment Findings

The TIS instrument performed successfully in the space environment. The strength of the
instrument is in differentiating extremely small changes is surface roughness for specular
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samples. Although the instrument works well for rougher materials, there are benefits to running
other instruments such as reflectometers with these samples, particularly when film degradation
occurs.

Because there were in-flight measurements, it was determined that the bulk of the
particulate contamination occurred after space exposure. Monitoring in-flight calibration factors
were used to validate the operation of the TIS instrument.

The 532 laser measurements of Kapton suggest that this method could possibly be used
as a low fluence AO monitor. TIS values at 1064 were flat, so choice of wavelength is
important. More work needs to be done in this area to judge the feasibility of this approach.

The TIS has successfully measured highly specular samples for surface changes in the
space environment. The Air Force sample STO1 and ST02 are prime examples. A possible
application for measuring highly reflective surfaces in space would be to qualify materials for
critical optical programs such as the Space Based Laser program. The TIS instrument could be
used to determine survivability requirements for space optics based on surface changes. A TIS
instrument that measures in transmission as well as reflection could be developed for transparent
materials.
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4.3 Yacuum Ultraviolet (VUV) OPM Data

The original intention of the VUV samples was to obtain on orbit insitu measurement
data using the OPM VUV reflectometer. This data was not obtained due to a malfunction of the
VUV source as described in Section 2.5. Thirty-two (32) VUV samples were flown on the OPM
and exposed to the Mir space. A listing of these samples along with a sample description and the
sample supplier is provided in Appendix A and Appendix J. Many of the OPM VUV samples
were measured pre- and post-flight in the VUV by Rachel Kamenetzky of the MSFC. This VUV
spectral data is shown in Appendix J Table J.1 and Figures J-1 through J-10. All other samples
were returned to the sample suppliers for post flight analysis. It is anticipated that the sample
supplier investigators will publish their own results in the open literature.

It is important to note that, as discussed in other sections, these samples were exposed to
a high humidity environment inside the Mir prior to deployment. Since many of the VUV
samples are (at least to some extent) hygroscopic, this exposure can and did affect the data.
Samples of exposed Lithium Fluoride and Magnesium Fluoride show the greatest effect, as can
be seen in their reflectance data in Figures J4, J-5, and J-6.

All VUV data plotted in the Figures in Appendix J include reflectance values for one or
two control mirrors used with the reflectometer. This data is plotted on “transmission” plots
without designating that it is reflectance data. The MSFC VUV reflectometer is a single beam,
specular type instrument, built by Acton Research. This single beam type reflectometer utilizes a
single detector light pipe design coated with sodium salicyate to convert vacuum ultraviolet
radiation into visible range for the detector. This detector system is rotated such as to measure
the 100% signal, transmission, and/or reflection. MSFC uses a special 6 sample holder, one
sample position is left open for 100% calibration measurements (performed at each wavelength),
a second sample position is for the laboratory “control” mirror, and the other four positions are
for samples. In some cases two “control” mirrors may be used for cross referencing and
checking laboratory control mirrors. Additional laboratory storage control mirrors are
maintained to verify the measurement controls do not change. All data is corrected for any
system changes as detected by the control mirrors. This system and procedure has been utilized
by MSFC since the late 1960s and has proven very reliable. Repeatability on a long-term basis
(over several years) is within +3% delta R/R

Data is not shown for the UTEM samples from NASA/LaRC and the College of William
and Mary. The ground controls and flight samples both changed dramatically. These samples
basically lost their reflectance in the vacuum ultraviolet region between 120 to 250 nm. We did
observe a major difference in appearance between the flight exposed and ground control
samples. Flight samples had a diffuse appearance while the ground control were still semi
transparent with not obvious scattering except for surface manufacturing irregularities. It is left
for the sample supplier to perform his material analysis to understand the mechanisms involved.

All VUV data plotted in Appendix J show significant changes in reflectance. As stated
before the samples coated or composed of hygroscopic type material degraded the most, but all
samples showed a loss in reflectance. The gold and platinum mirrors should be stable but show a
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fairly uniform loss in reflectance from 120 to 250 nm (see Figures J-1 & J-8). Compare this data
to Figure J-6 for the magnesium fluoride over aluminum mirror. The post-flight analysis of one
of the TIS gold mirror (discussed in Section 4.3.2) measured ~100 Angstroms of silicate
contamination. This thin but significant contaminate layer does not affect solar absorptance to
any significant level, but does result in very significant changes in the vacuum ultraviolet region.
Since the MgFo/Al mirror is an interference coating with a thickness on the order of 250
Angstroms (~1/4 wave at 120nm), a thin layer of contamination acts as an additional interference
layer. Previous data published by Linton?!, demonstrated the effect shown between the gold and
MgF/Al. mirror. Gold can experience an overall drop in reflectance whereas the MgF> mirror
can undergo increases/decreases in reflectance at various wavelengths dependent upon the
overlying contaminates optical properties (n & k) and thickness.

As a comparison to the mirrors, refer to the window data in Figures J-4 and J-5, for
Lithium Fluoride and Magnesium Fluoride windows. Since these are too thick to form
interference effects, you don’t see the same strange changes as for the MgF2/Al. mirror. Instead,
the overall transmission is reduced. When compared to the data in Figure J-2, J-3 and J-10; for
quartz crystal, fused silicate, and sapphire windows respectively, you see less loss in
transmission. At this time we contribute this reduction in transmission to materials that are not
hygroscopic and should not have been affected by the high moisture and humidity level in the
Mir internal environment. The difference in levels of transmission loss between these “stable”
samples could be results of variations in deposition thickness. Temperatures can also greatly
affect deposition, but since these are all window materials whose thermal optical properties are
close, one would not expect major temperature differences. The other cause can be the
difference in optical properties (n & k) between window materials in the 120 to 250 nm
wavelength range and those for the silicate contaminant in the same wavelength range. Further
studies will be required to evaluate the specific cause for the observed variations in degradation
between the quartz, fused silica, and sapphire samples.

Changes in optical baffle coatings are plotted in Figure J-7 and J-9, for MLS85 and
RMS550B. Both of these are black diffuse type coatings. The reflectance values in the VUV
were low to start with and did not change significantly after on orbit exposure, even with the 100
to 200 Angstroms of contamination.

4.4 Temperature Controlled Quartz Crystal Microbalance Data

The OPM Experiment used two TQCM sensors to monitor real time the molecular
contamination environment to which the flight samples were exposed. TQCM sensors have
become the standard for insitu measuring molecular deposition (contamination) in the space
environment. These sensors have sufficient sensitivity and stability to measure partial
monolayers of contamination, under a wide range of operating temperatures typical of the space
environment, and capability of "self-cleaning" by driving off (at high temperature) volatile
contaminants deposited on the sensor. One TQCM was held at —30 °C while the other was held
at —10 °C. The sensitivity of the OPM TQCM is 1.6 x 10° g/em’/Hz. The beat frequency
(difference) between the two crystals is monitored and recorded at one minute intervals by the
OPM Data Acquisition and Control System (DACS). Over 190,000 data points were recorded

79



91-1-118-169
December 31, 1999

for the OPM TQCM sensors. Refer to the Experiment Description section for details of the
TQCM design and integration into the OPM.

Figures 4-10 and 4-11 are summary graphs of the TQCM data from the OPM mission to
Mir. Since the OPM power was off from June 26 until approximately September 9, 1997, the
temperature of the TQCM crystals floated with the ambient thermal environment. The OPM
TQCM data is presented for the two time periods. Figure 4-10 is for the time period from OPM
deployment until power loss due to the Progress accident and is characterized by a number of
mass gain events.

OPM Flight TQCM Data
Before Progress Accident
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Figure 4-10. OPM Flight TQCM Data - Before Progress Accident
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Figure 4-11. OPM Flight TQCM Data — After Power Restored

Most of the mass gain events are followed by the slower re-evaporation of this mass.
This re-evaporation may have occurred because the mass gained was a volatile species that was
not “fixed” on the surface by solar UV. The TQCM sensors had the same viewing angle as the
sample array resulting in a minimum solar exposure for this time period. Without sufficient solar
UV, a contaminant that condenses on a surface will re-evaporate but at a slower rate due to the
sensor temperature. Solar UV can “fix” the contaminant on the surface by crosslinking the
contaminant, which reduces the vapor pressure and prevents re-evaporation.

The mass event in early June 1997 is noteworthy because this occurred during a period of
time when the Mir was in sunlight for the complete orbit. Figure 4.12 shows, for this time
period, the measured beat frequency from both TQCM’s on OPM compared to the time in
shadow for the Mir space station. For this orbital condition, the Mir surfaces became
significantly hotter, increasing outgassing rates. This resulted in a film thickness gain on the —
30°C sensor of about 145A (based on an assumed film density of 1 g/cm®). As with the other
events, most of the contaminant re-evaporated within a few days.

The TQCM data shown in Figure 4-11 is for the time period from September 9 until the
end of the mission. Except for the major event in mid-December, the molecular deposition is
very different from the earlier period with a fairly uniform accumulation rate for both sensors of
about 20A per month. This would seem to be a fairly small contamination rate except that it is
significantly above the maximum rate allowed for ISS'?. This rate is also of concern since the
TQCM sensors viewed Mir modules that had been in space for six to eleven years and should be
thoroughly baked out.
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The mass event that occurred in mid-December is by far the largest TQCM event
recorded on the OPM mission. Figure 4-13 is a more detailed view of this event for the ~30° C
sensor. This event represented a mass gain of 380A for the —-30°C sensor and 250A for the —
10°C sensor (based on an assumed density of 1 g/cm®) This event did not occur instantaneously
but rose in three steps over 28 minutes to its peak. As with most of the other events the
accumulated film re-evaporated almost completely. The OPM attitude for this time period also
resulted in a minimum of solar exposure for the TQCM sensor.

Attempts were made to correlate the mass gain events with Mir mission events but have
been largely ineffective. Even the large event in December has not been correlated with a
particular mission event. There were mission events in this time period that could have possibly
caused a mass gain event. It has been very difficult to correlate the OPM system time with the
Mir mission time. One of the problems is the difference between the OPM clock and the Mir
mission clock that was caused by the numerous power interruptions in early September, 1997.

The molecular contamination levels measured by the OPM were lower than might have
been expected from other measurements on Mir. This lower level is due to two factors. The
view factor of the TQCM sensors (and test samples) is of 6-11 year old Mir modules that should
be well baked out. In addition, the Mir attitudes resulted in minimum solar UV for much of the
mission exposure on the OPM samples and TQCM sensors to "fix" the molecular contaminant
onto the surfaces and prevent re-evaporation.
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Figure 4-12. TQCM Flight Data vs. MIR Time In Shadow
For Full Sun Orbit Period — 6/3/97 to 6/7/97
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Figure 4-13. OPM TQCM Flight Data on Mir

The TQCM environmental monitor subsystem performed well. The control system
performed exceptionally well and maintained thermal control at the defined set points of -10°C
and -30°C, within #2°C. The temperature data appeared to have noise on the reading of
approximately 5° peak-to-peak. This noise was not observed in either pre- or post-flight testing.
If these variations were really a variation in sensor temperature, this would have also
significantly affected the frequency of the sensor, which was not observed.

One of the errors that must be considered in the analysis of TQCM flight data is the effect
of orbital cycle solar heating on the TQCM crystals. Figure 4-14 shows the performance of the
-30° TQCM sensor over several orbits on May 5, 1997. The OPM attitude data with respect to
the sun is also shown. From this data the normal Mir attitude was solar inertial with the sun
positioned just below the horizon for the OPM samples and TQCM sensors. The orbit to orbit
variations of the sensor beat frequency during this period was due to the heating of the Mir
surfaces in the field of view. Also, from this data, it can be seen that for one orbit, the Mir
attitude changed to where the OPM TQCM sensors (and test samples) were at a near normal
exposure to the sun. This resulted in a solar induced change of 90-100 Hz. This was typical of
the maximum orbital variation observed for the Faraday laboratories TQCM sensors. The orbital
variations, as shown in Figure 4-14 are very small due to the excellent thermal mounting of the
two matched quartz crystals in the TQCM sensor.
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OPM Attitude Data - Solar Elevation
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Figure 4-14. Comparison of TQCM and Attitude Data

4.5 Passive Samples

The OPM passive samples were exposed on the carousel along with the active samples
but were not measured in-flight. There were twenty seven passive samples flown on the OPM.
These samples were characterized prior to flight and then re-measured post-flight. Appendix A
and Appendix I, Table I-1 provides a listing of these samples along with a sample description
and the sample supplier. As the case for the active samples, the passive samples were protected
until deployment and during retrieval by rotating the samples inside the OPM enclosure.

Detailed interpretation of passive sample results will be left to the sample supplier, to be
published in the open literature. All of the thermal optical property measurements performed on
the flight and control samples is listed in Appendix 1. Table I-2 provides this detailed listing of
thermal optical property measurements, including “pre-vacuum bakeout” data if taken. Samples
that were not inherently “non-outgassing” went through a pre-flight thermal vacuum bakeout to
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make sure they would not cross-contaminate the other samples. Table I-2 lists also the substrate
used for the sample.

Tt is worthwhile to remember that any damage or changes measured on the ground may
be different than what was the situation on-orbit. The atmosphere can bleach out some types of
damage or might even enhance changes after return. Some of the samples returned from LDEF,
on the TCSE experiment have continued to change since it returned in December 1989.*% So
one must be cautious in making conclusions only based on data from the passive samples.

The solar absorptance and thermal emittance of the passive samples were measured
pre-and post-flight using AZ Technology LPSR-200IR and Temp-2000 instruments. The data
are summarized in Table 4-6. Data are arranged so that the first line provides data for the flight
exposed sample and directly below it is the data for the ground control sample. Two columns are
highlighted which list the delta change measured for thermal emittance and solar absorptance. A
quick scan of this data reveals that the majority of sample materials did not show any significant
change in the 8 month exposure on the Mir. A few of the exceptions will be specifically
discussed. Most of ISS baseline materials appear to be stable in that the change in the thermal
optical properties is insignificant.

Sample SP15, which was a special thin film coating on a glass substrate (corning 7059),
appears to have completely disappeared during on-orbit exposure. Since this coating was known
to be very hygroscopic and since the OPM was exposed to excessive moisture and temperatures
inside the Mir prior to deployment, this coating could have been compromised even before it was
exposed. The excessive level of moisture was not anticipated. This occurred as the result of the
on-board fire incident and resulting temporary lost in control of the internal environment. For
this reason no post flight data was taken and any further analysis will be left to the sample
supplier.

Sample SP28 appears to have changed significantly for both the flight and ground
control. Figure 4-15 is a post-flight photograph of sample.

Since the measurement beam from the reflectometer overlaps the these measured changes
are not accurate. The photograph of the flight sample does show the white background which is
a form of “white anodize” did turn darker after the 8 month exposure on Mir. Note the
difference in reflectance in the white background between the outer ring or edge and the inner
area. The outer ring was protected by a Teflon retainer ring. A similar effect was found with the
SPO6 flight exposed sample shown in Figure 4-16. The white area is an anodized aluminum
(alloy 1100 H14) supplied by Rocketdyne. The “X” is integrated into the anodized layer by a
photographic process using silver compounds per Mil-P-15024D.
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Table 4-6. Summary of Passive Sample Thermal Optical Properties
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Beta Cloth SPO5 | SP5-01 F 0877 | 0877 |.0000-] 0299 0344 | 0045
Beta Cioth SP05 | SP5-02 B 0878 | 0876 | -0001-| 0287 0292 | 0005
Black marking-Metalphoto SP06 | SP6-01 F 0825 | 0.825 [-:0.000..] 0832 0.834 | 0002
Black marking-Metalphoto SP06 | SP6-02 B 0833 | 0.836 |.0003:] 0841 0.830 [ -0.001
Al Ist Surface Mirror Contam Monitor | SP10 | SP10-01 F 0015 | 0017 | 0002 0079 0083 | 0.004
Al 15t Surface Mirror Contam Monttor | SPI0 | SP1002 | B 0016 | 0012 | 0004 | 0078 | 0078 | 0000
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thermal coating .
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White Paint Z24P Binder w/ZnO SP25 Sp25-01 F 0905 0.898 0.007-1 0240 0251 0.011
Pigment : :
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EVA Label - Red SP27 SP27-02 B 0.756 0.764 0.008- 0.509 0.506 -0.003
EVA Label Decal Sp28 SP28-01 F 0.829 0.834 0.005 0380 0467 | 0.087
EVA Label Decal Sp28 SP28-02 B 0.815 0.816 0001 ] 0.663 0.504 -0.159
ATR Crystal-Zinc Selenide sP29 SP29-01 F 0.741 0.744 |.:0.003 5| 0.701 0.710 0.009
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Figure 4-15. Post Flight Image of Sample SP28; Space Exposed

Figure 4-16. Post Flight Image of Sample SP06; Space Exposed
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4.6 Multi-layer Insulation (MLI)

As part of the thermal control system, the sides of OPM were covered with multi-layer
insulation (MLI) blankets. The outer layer of the MLI is a Beta Cloth (type 500F) manufactured
by Chemfab. This particular Beta Cloth material was procured with one side treated with
DF-1100 by Chemfab in order to achieve good bonding of the required identification labeling.
The treated side of the Beta Cloth was the side exposed to the space environment.

Figures 4-17 is a pre-flight photograph of OPM showing the initial condition of the MLI
blankets and other OPM surfaces. Figure 4-18 shows the post-flight condition of the OPM.
Notice that the left end of OPM is significantly discolored. A distinct shadow is evident behind
the EVA handrail on the MLL. The degradation of the MLI is due to a combination of UV
degradation of the beta cloth outer covering of the MLI and molecular contamination (which was
also degraded by solar UV). Measurements of the MLI show that the solar absorptance
increased to a value of 0.49 from the initial value of 0.25. As discussed in Section 3, the sides of
the OPM were exposed to very different levels of solar exposure. This solar exposure difference
is evident by the degradation observed on the sides of OPM.

As shown in Section 4.7, contamination analysis shows that only a small level of
contamination (~40 Angstroms) was deposited on the left end of the OPM. This data indicates
that the darkening of the Beta Cloth was the result of mainly solar ultraviolet radiation with only
a very insignificant amount due to contamination. In order to confirm the ultraviolet darkening
effect, samples from the same lot of Beta Cloth as used on the OPM were supplied to the
NASA/MSFC, R. Kamenetzky/M. Finckenor for an exposure test in a space environmental
effects solar ultraviolet simulation system. Results from these tests”? confirmed the magnitude of
the degradation of the OPM MLI on the Mir mission. Table 4-7 compares the results of the
MSFC ground tests using Beta Cloth samples from the same lot as the flight MLI. These tests
also show that the DF-1100 treatment does cause increased degradation in a solar UV
environment.
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Figure 4-17. Pre-flight Photograph of the OPM.

Figure 4-18. Post-flight Photograph of the OPM.
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Table 4-7. Degradation of Beta Cloth in Flight and Ground Testing

Sample Flight/Ground | UV Exposure | Initial as [*] | Final as | Change in as
OPM Flight MLI Flight Exposed | 2903 ESH 0.25 0.49 0.24
Blanket Left End -
Treated
OPM Flight MLI Flight Exposed | 379 ESH 0.25 0.36 0.11
Blanket Right End -
Treated
OPM Flight Material | Ground Test 500 ESH 0.37 0.53 0.16
Same Lot Treated
OPM Flight Material Ground Test 500 ESH 0.38 0.43 0.05
Same Lot Untreated

* Differences in the initial measurement of o result from the high transparency of Beta Cloth. The

backing material affects the absolute as value. Flight exposed Beta Cloth values were measured on
the assembled MLI blanket while the ground test Beta Cloth sample was measured separately.
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4.7 Material Analysis XPS/ESCA

Chemical analysis of several of the OPM surfaces and samples was performed to better
understand the amount and composition of the contaminant films deposited during the Mir
mission. Additional analysis was performed on selected samples and ground controls to analyze
their surface composition and how this changed due to exposure to the Mir space environment.

4.7.1 XPS/ESCA Chemical Analysis of OPM Surface Hardware

ESCA chemical analysis of two sections of the OPM structure were performed by N. Carl
Miller, of Raytheon System Company, in Lexington, Massachusetts. Depth profiling was also
performed on the exposed side of each of the two samples, in order to determine the thickness of
contamination layers. The sample from the Carousel Cover Panel was exposed to the same
environment as the TQCM sensors and the OPM samples. The interface plate sample was
exposed in the same direction as the MLI blanket on the left side of the OPM as viewed in Figure
2-1 and 3-4. Table 4-8 presents a summary of the data showing the composition of the
contamination measured on the exposed surfaces. ESCA analysis found that the major
contaminate was silicate in the form of silicon dioxide on the e)glposed surface, which agrees with
other analysis on samples exposed to the space environment*®'” Depth profiling of the hardware
samples indicated that the sample from the Carousel Cover Panel had a 150 Angstrom layer of
silicon dioxide on the surface of the aluminum, while the sample from the interface plate had a
40 Angstrom layer of silicon dioxide on the aluminum.

Table 4-8. ESCA Surface Composition (Atomic Percent)

Sample Al | Si. 0 C N F S Cl Na |Zn |Ca
Interface Plate 6.12 | 9.72 54.89 12456 1159 119546 | .46 |024 |- -
Carousel Cover |25 [17.28 | 599 19.19 |04 022 |- 23 |- 09 1.19
Panel

“control” not - 1.72 278 166.02 ]201 ]1.03|.21 25 055 1.18 .22
exposed

4.7.2 XPS/ESCA & SEM/EDAX Chemical Analysis of Selected OPM Calorimeter
Samples

Referencing the depth profile scans are included in Appendix F and the survey spectrum
runs are in Appendix G, and the SEM/EDAX data is in Appendix H.

Another set of OPM samples was taken to WSTF for X-ray photoelectron spectroscopy
(XPS) analysis. Twelve of the calorimeter samples used for the reflectometer were selected. In
addition one gold mirror and one sample of the inorganic binder (potassium silicate) as used with
Z93P and AZ93P were analyzed. The binder data was used to provide accurate binding energy
values for both potassium and silicate in the potassium silicate compound in order to help
discriminate the types of bonding species from the flight and control sample XPS data.
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These measurements were performed by Steve Horung of the WSTF as directed by the
JSC Materials and Failure Analysis Branch in support of the ISS Boeing contamination analysis
and control team under the direction of Ron Mikatarian. This analysis was coordinated by Jim
Visentine of Boeing. The following section incorporates the summary report from Steve
Hornung/WSTF expanded to include additional data and interpretation of results.

The purpose of this analysis was to provide for additional in-depth material analysis in an
effort to determine the effect of the space environment including contamination on thermal
control coatings used on the ISS. XPS and SEM/EDAX were used for this analysis to determine
the elemental composition and chemical state of the contaminant layer and to characterize the
chemical composition of the surface as a function of depth.

4.72.1 Samples Tested

The calorimeters consisted of an aluminum body which supported a thermally and
electrically isolated substrate to which the thermal control coating was applied. The thermal
control coating, designated Z93P or AZ93, consists of zinc oxide with a potassium silicate
binder. Some of the samples were pre-contaminated with offgased products from heated Tefzel
or silicone. One pair of samples was coated with a special DuPont fluorocarbon formulation
(designated as Teflon in this report). All pre-contaminated samples were exposed preflight to
2-days exposure to near UV radiation and 5000 equivalent solar hours of vacuum UV before
flight. This was done in an effort to determine the magnitude of atomic oxygen cleaning of
contaminated surfaces after extensive solar ultraviolet irradiation, that served to fix or cross-link
the material on the surface, prevent cross-contamination, and provide accelerated data (since the
Mir exposure time was limited). A special mounting fixture had to be designed and fabricated to
mount the calorimeter on the sample holder used for analysis. Twelve calorimeters and one gold
mirror on a silica substrate were analyzed, reference Table 4-9 for a listing of the calorimeter
samples, their ID’s, description, ground environmental exposure, and fight environmental
exposure.

4722 Method

XPS was performed on selected areas of each calorimeter using a Physical Electronics
5600 surface analysis system. For each area analyzed, a survey spectrum was acquired using
magnesium (Mg) ka x-rays with a nominal pass energy of 190 electron volts (¢V) in the binding
energy range of 0 to 1150 eV. The elements on the surface were identified, and high-resolution
spectra of the primary photoelectron peaks of these elements were obtained using Mg ko x-rays
at a nominal pass energy of 11 V. From the high-resolution spectra, the atomic concentrations,
given in atomic percent, were calculated using the peak area and sensitivity factors in the
instrument software. The binding energies of the elements were also determined from the high-
resolution spectra. Depth profiles were obtained on each of the calorimeters to determine the
elemental distribution in the surface layers of the plates. Argon ions accelerated to 4 kV were
used to remove material for the depth profile at a rate of 100 angstroms (A) per minute as
determined on a 1000 A silicon dioxide on silicon (SiO- on Si) standard.
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In addition to the XPS scans, small sections of each of the calorimeter samples were
overcoated with a conductive layer and then SEM images were made of each of these areas.
Along with the SEM images, three EDAX scans were made of interesting features on Z93P,
sample AZC032 and the 2000A Silicone on Z93P AZC037.

4.7.2.3 Discussion of Results for Each Sample

Gold Mirror: High Purity Gold on a Polished Fused Silica Substrate

Figure G-1 shows the survey spectrum from the surface of gold mirror; carbon, oxygen,
and silicon are detected on the surface in addition to a small amount of gold. The peaks are
labeled with the associated energy levels (-Au 4f, -C 1s) or the Auger peak designation
(-OKVV, -CKLL). Subsequent high-resolution spectra were processed to give the following
atomic concentrations: Carbon 10.2 %, oxygen 58.6 %, gold 0.6 %, and silicon 30.6 %. The
binding energy from the silicon 2p high resolution spectrum shown in Figure G-3 was
determined to be 103.8 eV, which is consistent with a silica, most likely formed from the action
of atomic oxygen on the silicone contamination deposited on orbit. Figure F-13 in Appendix F is
the depth profile of this deposit and indicates a silica thickness of 90 to 100 Angstroms. Figure
G-2 is a survey spectrum taken following the depth profile run and shows only the presence of
gold.

Z93P White Ceramic Paint, AZC032 and AZC033.

The survey spectra from the ground control and the flight samples are given in Figures
G-4 and G-5. The ground control sample shows the presence of carbon, silicon, potassium,
oxygen, and zinc. The atomic concentrations calculated from the high-resolution spectra are
given in Table 4-10 and show carbon, at a concentration of 61% to be the predominant
constituent on the surface. The flight-exposed sample shows the same elements present on the
surface with a greatly reduced carbon concentration and higher concentrations of the constituents
of the Z93P paint. The depth profiles shown in Figures F-3 and F-4 in Appendix F confirm that
the carbon layer is primarily confined to the top 200 Angstroms of the surface in both samples.
This is consistent with the behavior of “adventitious” carbon, which is present on most samples
due to the presence of organic contaminants in our environment. With respect to concentrations
of the other elements the depth profiles are otherwise similar, the potassium and silicon drop
slightly while the zinc steadily increases until a depth of approximately 800 Angstroms, where it
reaches a steady value. Both profiles show transitions from the surface layer containing the
adventitious carbon to a potassium, silicon, oxygen, containing layer and finally to a layer which
also contains zinc. This behavior is expected since the zinc oxide particles are coated with a
potassium silicate binder. This transition from surface layer to potassium silicate binder to
binder and zinc oxide is seen in all subsequent Z93P samples. The binding energies from the
zinc are consistent with the oxide and the silicon is consistent with a silicate. Fj gures G-6 and G-
7 are survey spectra taken following the depth profile for the ground control and the flight
sample. The elemental constituents of the paint, silicon, potassium, oxygen, and zinc are present.

An interesting phenomena occurred during the depth profile runs for all of the Z93 type
coatings. Typically what was found, once the “adventitious” carbon layer was removed, was that
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a thin layer of binder material composed of potassium silicate covers the zinc oxide pigment.
The potassium and silicon signals drop off fairly quickly as sputtering progressed. The zinc and
oxygen signals dominate, then reach fairly steady values within “800 to 1000” Angstroms sputter
depth, dependent upon the sample. As can be seen in all of the SEM photos taken for Z93 type
coatings (refer to Figure H-1 and H-2 for Z93P) this is a very rough surface and porous with a lot
of structure. What occurs during the sputtering of the surface is the removal of the potassium
silicate binder covering the pigment particles. In addition remember that the pigment (zinc
oxide) to binder (potassium oxide) ratio is approximately 4 to 1 (by weight), so there is
considerably more zinc than silicon. As this surface coating material is removed the “round”
pigment particles of zinc oxide are exposed. As more material is removed their exposed surface
area (Zn and O) increases rapidly with depth or erosion of the roughly spherical particles.
Eventually the Zn and O nominates. Note that the O signal also derives from the oxygen in the
binder. It is difficult to separate the oxygen spectra from that originating in the ZnO to that
originating in the KSiO4. For other samples the oxygen signal also gets contributions from the
converted contaminant layers of both the silicone and silicates.

On a rough surface, there is shadowing of the ion beam due to the topography of the
sample on a microscopic scale, plus the differing angles of view of the ion gun, x-ray source, and
electron energy analyzer. This means that even if a uniform layer of contaminant were on the
surface, a sharp interface would not be evident in the depth profile. In other words it is difficult
to distinguish the relative thin ~100 A of silicate contamination layer on Z93P type coatings
given the existing silicate and oxygen elements and the very rough and porous nature of these
ceramic coatings. Refer to Appendix H where the SEM photographs are included. They show
clearly the level of porosity, approximately 40%, that is present on all of the Z93P and AZ93P
surfaces.

AZ93 White Ceramic Paint with Teflon Overcoat, AZC017 and AZC018

The survey spectra from the ground control and flight samples are given in Figures G-8
and G-9. Carbon, fluorine and a trace of oxygen are the only elements detected on the surface of
the ground sample. The flight-exposed sample shows predominantly carbon and fluorine with
small amounts of oxygen and silicon. The atomic concentrations calculated from the
high-resolution spectra are given in Table 4-10 and show carbon and fluorine to be the only
elements with apparent high concentrations at the surface. Depth profiles on this pair of samples
are shown in Figures F-1 and F-2. The fluorocarbon layer on the ground control sample shows
near complete coverage to a depth of approximately 200 Angstroms. From 200 Angstroms to
400 Angstroms is a transitional layer between the complete coverage and the bulk
concentrations, beginning at a depth of approximately 400 Angstroms. This transitional region
may be due to shadowing of the ion gun by the rough surface. Also, due to this shadowing,
fluorine is detectable throughout the depth profile. The flight-exposed sample shows similar
behavior with slightly elevated carbon concentrations near the surface. Figure G-11 shows a
Survey Spectrum of the flight-exposed sample following the depth profile. Carbon and fluorine
are detected in addition to the silicon, oxygen, and zinc from the bulk coating. This post-depth
profile spectrum is representative of both the ground control and the flight exposed sample.
SEM images presented in H-7 and H-8 ground and flight exposed samples, show that the Teflon
overcoat is indeed partly eroded away by atomic oxygen exposure. On the other hand the
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surface survey spectrums in Figures G-4 and G-5 indicate that the Teflon coating is still present.
The depth profiles in Figures F-1 and F-2 again show that some Teflon is still present. The
magnitude of this difference does not appear to be as great as indicated from the SEM photos,
which appear to show that most, if not all the Teflon has been removed from the flight exposed
sample. What is interesting is the depth that the fluorine signal persists (> 800A), indicating that
the Teflon overcoat is fairly deep into the porous coating or that the fluorine has reacted with the
silicate form a fluoro-silicate.

500 Angstroms Tefzel on Z93 White Ceramic Paint, AZC027 and AZC028

The survey spectra for the ground and flight exposed samples show the constituents of
the paint, silicon, potassium, oxygen, and zinc. The ground control sample shows significant
carbon and a small amount of fluorine. The flight-exposed sample shows less carbon and only a
trace of fluorine. The flight-exposed sample also shows high surface concentrations of zinc.
The atomic concentrations calculated from the high-resolution spectra are given in Table 4-10.
The depth profiles for theses samples are given in Figures F-5 and F-6. The flight sample shows
a significant drop in both the amount and thickness of the surface carbon. Only a trace of
fluorine was detected on the flight sample and was not detected throughout the depth profile.

2000 Angstroms Tefzel on Z93P White Ceramic Paint, AZC029 and AZC030

The survey spectra for the ground control and flight exposed samples treated with 2000
Angstroms of Tefzel offgas products are given in Figures G-12 and G-13. The 2000 Angstrom
thickness was calculated from deposition rates calculated from a quartz crystal microbalance.
The ground control sample, AZC030, shows the presence of carbon, oxygen, potassium, and
fluorine with a trace of silicon. The flight exposed sample shows an elemental composition more
consistent with the bulk potassium silicate/zinc oxide coating with a small amount of fluorine.
The elemental compositions of the two samples determined from high-resolution spectra are
given in Table 4-10. Figures F-7 and F-8 are the depth profiles for the ground and flight exposed
samples. The ground control samples shows an enriched carbon layer approximately 500
Angstroms thick. Oxygen, potassium, and fluorine are also apparent in the top 500 Angstroms.
The fluorine concentration drops to the noise level at approximately 700 Angstroms at which
depth the elemental composition is characteristic of the bulk coating. The flight exposed sample
shows much lower surface carbon and a nearly immediate appearance of the binder layer.

500 Angstroms Silicone on Z93P White Ceramic Paint, AZC034 and AZC035

The survey spectra for the ground control and flight samples show carbon, oxygen,
silicon, and potassium. The flight-exposed sample shows much lower surface carbon and
increased amounts of silicon, oxygen, and zinc. The atomic concentrations determined from the
high-resolution spectra for both the ground control and flight sample are given in Table 4-10.
From the silicon 2p high-resolution spectrum, the charge-corrected binding energy of the ground
control sample was determined to be 102.3 eV, which is consistent with a silicone compound.
The charge corrected binding energy of the silicon 2p peak on the flight exposed sample is 103.3
eV which is characteristic of a silica compound. For comparison, the silicon 2p binding energy
obtained from a potassium silicate reference material is 102.4 eV, which again supports the
interpretation that the flight sample has a silica coating. The depth profiles for these samples are
shown in Figures F-9 and F-10. From the depth profile data, the ground control sample data
indicates a carbon-rich surface layer approximately 400 Angstroms thick, which also contains
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silicon, oxygen and potassium. From the elemental make-up of this surface layer, the silicone
appears to have in some way permeated the potassium silicate layer. By a depth of
approximately 500 Angstroms the bulk containing the zinc oxide along with the potassium
silicate is evident. This agrees fairly well with the original data from MDAC/Boeing that
showed a deposition of ~500 Angstroms of silicone, based on the TQCM data taken during
sample preparation. The flight sample depth profile indicates only a very thin carbon layer on
the surface of the sample, which disappears within the first 50 Angstroms. All of this data
supports the analysis that the original (~5004) silicone layer deposited on the flight sample was
converted to a silicate during exposure to the Mir space environment. The residual thickness of
the silicate layer on the flight exposed sample is difficult to determine with any exact value as is
further discussed in the contamination section.

2000 Angstroms Silicone on Z93P White Ceramic Paint, AZC036 and AZC037

Survey Spectra for the ground control and flight exposed samples are shown in Figures
G-16 and G-17. The ground control sample shows predominantly carbon and oxygen with
silicon, potassium and a small amount of zinc. A trace of sulfur was detected as well. In
addition, the silicone charge corrected binding energy from the high resolution silicon 2p
spectrum is 102.2 eV originating from the surface contaminant on the ground sample correlates
with silicon bonded in a silicone structure. Figure G-18 shows the details of this scan. The flight
exposed sample shows much lower surface carbon with an increase in the silicon and oxygen
concentration. Potassium and zinc were also detected. The atomic concentrations are given in
Table 4-10. Binding energy analysis of the silicon 2p peak of the flight-exposed sample is 103.4
eV, which is consistent with a silica compound, see Figure G-21. One can see clearly that the
original surface silicone has converted to a silicate after exposure to the space environment.
Depth profile scans are given in Figures F-11 and F-12, indicating the depth in the coating that
this conversion has occurred. It appears from Figure F-11 that the all of the silicone has been
converted. If carbon is used as a guide, then depth profile data shows that the carbon reaches the
793P residual level within ~800 Angstroms. From the high resolution data, we also know that
the silicon on the surface of the flight sample is associated with a silicate not a silicone, similar
to the Z93P sample with 500 Angstroms of silicone.

If we compare the depth profile data for the ground samples only in Figures F-10 and
F-12, then it is easy to see that the indicated quantity of original silicone contamination is greater
on the 2000A sample than on the 500A sample. The question is whether or not the mass per unit
area is four times as great between the two samples as originally prepared?

Surface Features on Flight Samples

From the SEM imaging of the flight exposed Z93P control sample (AZC032), what
appears as two different types of growth features were found on the surface of the Z93P coating.
One is referred to as “crystal” since it has more of a bulk crystalline form, whereas the other is
referred to as “mica” since it has more of a layered or platelet growth form. Figure H-2 clearly
shows these two features. Figures H-3 and H-4 are close-ups of each of these two types of
features. EDAX scans were performed on each of these two features as shown in Figures H-5
and H-6. Both show strong peaks of potassium (K) and zinc (Zn). Interestingly, the crystal type
structure has a higher ratio of K than Zn, whereas the mica has more Zn than K. In order to
verify the previous EDAX scans, another scan was performed on the 2000A Silicone on Z93P
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verify the previous EDAX scans, another scan was performed on the 2000A Silicone on Z93P
(AZC037) sample. SEM images of this sample also showed the “mica” type structure, but not
the "crystal” type structure (see Figure H-14). An EDAX scan was made on this feature resulting
is spectra shown in Figure H-15. These data are consistent in that the Zn signal is considerably
greater than the K, which is the same result found for the mica structure on the Z93P (AZC032).
It should also be noted that the samples coated with Teflon or the offgasing products of Tefzel
did not show any of this growth.

This growth has not been seen before on space exposed Z93 coatings, including the
6-year exposed surfaces on LDEF, and the other passive samples on Mir (POSA I)'”. The
difference with these samples is that they were stored inside the Mir and exposed to its
environment. The OPM was in a protective bag, but that bag “breathed”. OPM was exposed
during the on board fire on Mir and other events. Records indicate very high moisture levels.
Post-flight inspection of OPM found what appears to be indications that considerable
condensation occurred on some of the OPM surfaces. In the laboratory it has been found that if
these coatings are exposed for extended times to high humidity and temperature, then
carbonaceous type growth initiates at the aluminum/coating interface and grows through the
surface. In time these appear as fine crystals. Normally, the coatings never see this kind of
environment. Most environments in the laboratory and where spacecraft are handled never reach
these excessive levels of moisture and temperature, so this normally is not a problem.
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4.8 Results/General Observations

4.8.1 Molecular Contamination

The molecular contamination levels measured by the OPM TQCM (180 Angstroms) and
measured on the OPM hardware surfaces (40 to 150 Angstroms) were lower than might have
been expected from other measurements on Mir!? (260 to 10,000 Angstroms). This lower level
is due to several factors. The view factor of the TQCM sensors (and test samples) was of 6-11
year old Mir modules that should have been thoroughly vacuum outgassed. In addition, the Mir
flight attitude resulted in minimum solar UV exposure of the OPM samples to "fix" the
molecular contaminant onto the surfaces and prevent re-evaporation. Exposure time to the Mir
space environment was twice as long for the MEEP passive experiments than for the OPM
samples. The large 10,000 Angstrom deposition measured on the MEEP/POSA-I experiment
appeared to originate from a stored Mir solar array located on the docking module which had
been in space approximately 4 months at the time of MEEP/POSA-I deployment. In addition,
the side of POSA-I exposed to the solar array was only a couple of meters distance. The OPM
samples did not have direct line-of-sight to this stored solar array.

Samples on the other side of the POSA-I experiment faced the older Mir modules similar
to the OPM samples. The level of contamination (260 Angstroms) on POSA-I agrees with OPM
data when the longer POSA-I exposure time (~x2) is considered. Table 4-11 compares the OPM
contamination with the POSA-I levels for Mir. Only the samples facing the older Mir modules
are compared. It can be seen that the correlation of deposition with time is very good, while the
correlation with ESH is very poor. One would expect the ESH correlation to agree. Possible
reason for the difference is the uncertainty in the ESH exposure level. OPM calculated ESH
based on attitude data provided by the Russians, while the POSA-I data was based on a unique
radiometer that recorded total UV fluence. Attitude data for the whole MEEP exposure period
was not available to verify the measured fluence. Also, the solar radiometer on the OPM failed
during the mission, therefore the OPM calculated fluence levels also cannot be verified by
independent measurements.

Significant transient contamination events were detected by both of the OPM TQCM
units as described in Section 4.4. Therefore not only is location and pointing direction important,
but the actual time of exposure is also very important. Most major contamination deposition
appeared to be from transient events instead of a long term steady build up as would have been
expected. Although the POSA-I experiment was a passive type, some time resolved information
was obtained. During the next Space Shuttle mission STS-79 (September 1996) after
deployment on STS-76 (March 1996) photos were taken of the POSA-I which showed the heavy
contamination on the side facing the stored solar array.!” Later photos and post flight analysis
indicated that most of the measured contamination occurred during this time period between
STS-76 and STS-79. Note, that OPM was not even delivered on orbit to Mir until later (STS-81,
December 1996) and samples not exposed until April 1997 (13 months between initial
MEEP/POSA-I exposure and the OPM exposure). Subsequently POSA-I was retrieved
approximately 3 months before OPM was retrieved from the Docking Module.
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In addition to transient events, the time in sunlight was shown to be very significant in
that all TQCM’s flown measured high deposition rates when time in sunlight reached 100% for
several days.® This is usually plotted as time in shadow, which translates to 0% time in shadow
for full sun orbits. Refer to section on TQCM data, Figure 4-12 in Section 4.4 which shows this
correlation of TQCM frequency to Mir time in shadow.

Table 4-11.  Comparison of Contamination versus Environmental Exposure

Experiment Exposure Solar UV Contamination Comparison Comparison
Period (months) | Exposure (ESH) | Thickness (A) | Thickness/ESH | Thickness/Time
OPM Sample side 8 832 ~165 0.20 20.6
MEEP/POSA-I 18 413 ~260 0.63 144
Mir facing side
Standard -- - - 103% 35%
Deviation

4.8.2 Discussion of the Results of the Pre-contaminated Z93P Samples Flown on OPM

Some additional observations can be made from the results of OPM concerning in-space
contamination. The data generated by OPM including results of the pre-contaminated Z93P
thermal control coatings demonstrates the magnitude of our lack of understanding all of the
events that can degrade a surface in space and the need for continued on-orbit insitu
experimental systems to help untangle this web of data.

Most spacecraft thermal control surfaces for long term missions are based on ceramic
based paints that provide the required optical properties, are stable in space for long periods, and
can be applied to complicated spacecraft surfaces at reasonable costs. A better understanding of
the processes involved in order to predict contamination effects on these porous surfaces. Also,
we need to be able to correlate contamination effects between surface coatings such as Z93P
relative to a smooth surfaces such as the mirrors and TQCM crystals as flown on OPM, which
are much more easily modeled.

Analysis of the OPM samples exposed on the Mir space station clearly demonstrate that
deposition of a molecular contaminant onto a rough porous surface is not a simple thin film layer
on a smooth surface. Even on a smooth surface, a contaminant does not initially go down as a
thin film. Contaminants normally form isolated islands that grow in size as the contaminant
continues to deposit until the islands finally grow together to form a continuous film. For rough
surfaces, a relatively thin contaminant may never form a simple surface layer. There will
probably always be some of the rough surface material exposed.

The pre-contaminated Z93P sample experiment on OPM was proposed by Hank Babel,
etal. with MDAC now Boeing Huntington Beach, Calif. The original objective of this
experiment was to evaluate the degree that Atomic Oxygen would clean heavily contaminated
Z93P thermal control coatings after extensive solar exposure. This issue was and is till a high
priority issue for the ISS materials contamination community. The large area thermal radiators
and a multitude of other smaller radiators are coated with Z93P and AZ93 thermal control
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coatings, and it is essential to predict their lifetime performance while on orbit. Past data from
LDEF and on Mir have demonstrated the long term stability of these coatings in the LEO space
environment, but contamination has the potential to negate this stability. If the coatings degrade
faster than expected, then the operational performance of the ISS must be reduced to match the
reduced ability to dump excessive heat. All excessive heat must be dumped (radiated) from the
thermal control radiators. If they degrade optically (solar absorptance increases and/or thermal
emittance decreases) the quantity of heat dumped is correspondingly reduced.

In order to accomplish this experiment, it was decided to prepare four samples of 7293,
each in two sets having two thickness’ of two different types of contaminants deposited in a
vacuum from ISS baseline materials. Source of contamination was materials which were
primarily selected for wire insulation. MDAC had already experienced contamination events
from these two materials and was concerned about their usage and which material would be
better for long term use on ISS.

First it is worthwhile to understand how the samples were prepared. The pre-
contaminated Z93P was prepared by directly exposing pristine surfaces to the offgasing products
of heated silicone or Tefzel in a vacuum system. During contamination deposition, in order to
build up a layer and minimize re-evaporation, the surfaces were simultaneously exposed to a
ultraviolet source.”® The magnitude or thickness was determined by monitoring a quartz crystal
microbalance (QCM), until the desired thickness was achieved (500 or 2000 Angstroms). Then
additional vacuum ultraviolet exposure (estimated at ~5,000 ESH) was performed, to pre-
damage the surface. A certain amount of UV coating damage was achieved, but much of this
degradation was bleached out before flight for the silicone contaminated surfaces. Interestingly,
the Tefzel contaminated surfaces up to launch still exhibited significant degradation, but also
were on a recovery curve, refer to Figure 4-6 in Section 4.1.

From the SEM photos showing the extreme rough and porous nature of the Z93 coating,
one certainly would not expect a well defined layer of contamination. Interestingly the optical
data correlates fairly well with the initial deposition “thickness.” In addition, the XPS survey
scans indicate that contamination layers were indeed achieved and to some extent residing on the
surface of the coating. In the case of the Tefzel source, the contamination is dominated by a
hydrocarbon with very little fluorine present. Likewise the XPS depth profile data shows a
reasonable thickness was achieved (ground control samples) but not exactly the 500 and 2000
Angstroms indicated by the QCM. In fact the layer thickness as derived from the XPS sputter
depth profile data taken on the ground control samples is not a factor of four difference as
planned, but appears closer to 500 Angstroms for both Tefzel contaminated surfaces. For the
silicone contaminated surfaces the thickness appears to be more like 600 and 1000 Angstroms.
In addition, the depth profile data indicates that the contamination reaches a steady value within
1000 to 1500 Angstroms. We were not able (due to time constraints) to determine the actual
depth of this residual level, and determine if the residuals (located in the porous structure) and
the partial surface deposition adds up to what the QCM monitored.

Given the extreme porous nature of the Z93 coating, the results are not a surprise. What

it does demonstrate is the difficulty in trying to model the contamination effects on Z93 type
coating using conventional techniques.
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Given the extreme porous nature of the Z93 coating, the results are not a surprise. What
it does demonstrate is the difficulty in trying to model the contamination effects on Z93 type
coating using conventional techniques.

The manner in which the contamination deposits and accumulates on a Very porous
surface can be compared to trying to apply paint to a very porous concrete block, it absorbs the
first few layers until a sufficient “primer” layer is formed. Likewise the first few layers of
contamination during deposition must be “soaked” up into the porous region of the coating. If
the contaminate layer is thick enough then one can talk about a continuous layer. Until that level
is reached the surface must be treated as a very porous open structure. Of course if the
contaminate level ever even begins to reach this continuous level, the coating would of long
since lost its usefulness. It is much easier (not easy) to put known contamination layers (must
measure in terms of areal density not thickness) down on known smooth surfaces and measure
the resulting effects (thermal optical properties) under various simulated environmental
conditions (solar ultraviolet radiation, atomic oxygen, and high energetic particulates).

Other complications arise for the actual surfaces exposed on a spacecraft. Contaminant
sources are comprised of a multitude of materials including typical silicones, hydrocarbons,
various polymers, greases, coolants, fuels, oxidizers, and waste dumps. Temperatures of the
contamination sources and critical surfaces also play a very important factor. Rates of offgasing
are a function of time in vacuum, temperature history, and area. Likewise the deposition levels
depend upon geometry factors between source and critical surface and surface texture/type. In
addition, the space environment (solar ultraviolet radiation, atomic oxygen, and high energetic
particulates) will affect deposition rates and optical properties changes. It is still not possible to
set up and experimentally perform this level of simulation testing in ground facilities.

Until very detailed and evolved models are developed, once must rely on these empirical
techniques correlating the thermal optical properties with areal density (mass per unit area),
contaminant type, and exposure (solar ultraviolet radiation and/or atomic oxygen). Whether the
contaminant is a silicone or hydrocarbon makes a radical difference in terms of the long term
degradation of optical properties. For hydrocarbon contaminants the AO is removing material
whereas for silicone contaminants AO is converting the deposit to a silicate. The interaction of
all of these forces present a major challenge to develop long term lifetime prediction models.
For accurate modeling and to obtain a high level of confidence in the models, all of the
interactions must be included.

Besides the need for more extensive ground testing to build up usable data bases, flight
experiments must continue to collect flight data since this is the only location where all of the
spacecraft and space environmental effects are present simultaneously. Ground testing is
cheaper and quicker, but cannot simulate all of the flight environments. The specific reason that
OPM was developed was to acquire this vitally needed data.
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5.0 SUMMARY

The OPM is a unique, reusable flight instrument to study the behavior of materials in the
space environment. The OPM performed well on the mission to Mir and demonstrated its
capability to measure the in-space behavior of materials and monitor selected components of the
space environment. The processed in-flight and post-flight OPM data from the Mir mission has
already provided the ISS and aerospace community with unique and valuable data on the
performance of materials in the Mir space environment. The OPM has provided the only in-
space time-dependent data for critical ISS materials including contaminated surfaces.

The continuing post flight analysis of the OPM samples, hardware, and flight data is
yielding valuable information, More analysis and ground testing is scheduled that will help to
understand and verify the OPM findings. Comparing the OPM data with other experiments that
were flown on Mir is also helping to understand both the magnitude and uniqueness of the Mir
contamination environment. As can be seen in the data described is this report; location, time,
temperature, and direction are all very important in predicting the quantity and effect of
contamination on critical surfaces. Transient events which may not be possible to predict can
also significantly contribute to the contamination environment.

New and modified materials/coatings need to be thoroughly tested on the ground and
then exposed to the actual space environment in order to verify that anticipated improvements
work the way they were planned. LDEF and Mir provided the platform necessary to carry out
these important material tests. In order for the ISS to realize its full potential in the area of space
environmental effects experimentation, the existing and flight proven OPM must be incorporated
in the flight instrumentation available to material researchers and re-flown on ISS at an early
date. :

For more information on OPM, please see the Internet web sites at
http://www.aztechnology.com and http://see.msfc.nasa.gov/see/see.html.
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Minimum and Maximum Calorimeter Temperatures

During Weekly Measurement Timelines

Calorimeter| Temperature |[Min Temp, Solar Max Temp, | Solar Absorptance
Sample Sensor °C Absorptance °C
4/29/97 4/29/97 6/24/97 6/24/97
CRO1 T00 -55.68 0.141 48.34 0.204
CRO2 T01 -59.74 0.344 66.93 0.348
CRO3 T02 -58.23 0.255 48.83 0.278
CR04 T03 -65.77 0.095 35.26 0.089
CRO5 T04 -60.74 0.053 32.75 0.057
CRO6 TO05 -66.27 0.161 37.27 0.156
CRO7 T06 -67.37 0.169 38.21 0.191
CRO8 TO7 -66.27 0.157 38.78 0.156
CR09 TO8 -65.75 0.148 37.84 0.142
CR10 T09 -46.67 0.358 111.16 0.358
CR11 T10 -58.23 0.358 85.02 0.387
CR12 T11 -6.46 0.465 229.27 0.503
CR13 T12 -64.76 0.124 39.28 0.129
CR14 T13 -69.29 0.420 68.43 0414
CR15 T14 -63.26 0.389 75.47 0.405
CR16 T15 -67.28 0.147 37.27 0.147
CR17 T16 -65.77 0.149 38.27 0.164
CR18 T17 -66.27 0.184 34.25 0.194
CR19 T18 -60.74 0.150 39.78 0.190
CR20 T19 -58.73 0.261 59.38 0.342
T0O -3.1 61.69
Emissivity Plate
T01 -3.8 62.81
Emissivity Plate
T02 -4.07 63.48
Emissivity Plate
TO03 -3.34 61.99
Emissivity Plate
IR Radiometer -2.569 55.494
Solar Radiometer -2.64 54.776
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Reflectance
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Figure C-1.

Reflectometer Data for CRO1, Triton COR Coating
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Figure C-2.  Reflectometer Data for CR02,
TMS-800AZ, Yellow Coating
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APPENDIX E

Solar Exposure in ESH and Atomic Oxygen Flux vs Exposure Time
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Figure G-7. Survey Spectrum of AZC017, AZ93 White Ceramic Paint

with Teflon Overcoat, Ground Control.
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Figure G-8. Survey Spectrum of AZC017, AZ93 White Ceramic Paint
with Teflon Overcoat, Ground Control, following Depth Profile.
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Figure G-9. Survey Spectrum of AZC018, AZ93 White Ceramic Paint

with Teflon Overcoat, Flight Exposed
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Figure G-10. Survey Spectrum of AZC018, AZ93 White Ceramic Paint
with Teflon Overcoat, Flight Exposed, following Depth Profile.
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Figure G-11. Survey Spectrum for AZC030, 2000 Angstroms Tefzel

on Z93 White Ceramic Paint, Ground Control
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Figure G-12. Survey Spectrum for AZC030, 2000 Angstroms Tefzel
on Z93 White Ceramic Paint, Ground Control, following Depth Profile.
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Figure G-13. Survey Spectrum for AZ.C029, 2000 Angstroms Tefzel
on Z93 White Ceramic Paint, Flight Exposed.
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Figure G-14. Survey Spectrum for AZC029, 2000 Angstroms Tefzel
on Z93 White Ceramic Paint, Flight Exposed, following Depth Profile
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Figure G-15. Survey Spectrum for AZC037, 2000 Angstroms Silicone
on Z93 White Ceramic Paint, Flight Exposed.
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Figure G-16. Survey Spectrum for AZC037, 2000 Angstroms Silicone on Z93 White
Ceramic Paint, Flight Exposed, following Depth Profile
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Figure G-17. High Resolution Scan of the Silicon 2p Line AZC037, 2000 Angstroms
Silicone on Z93 White Ceramic Paint, Flight Exposed
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Figure G-18. Survey Spectrum for AZC036, 2000 Angstroms Silicone
on Z93 White Ceramic Paint, Ground Control
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Figure G-19. Survey Spectrum for AZC036, 2000 Angstroms Silicone on 793 White
Ceramic Paint, Ground Control, Exposed, following Depth Profile
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Figure G-20. High Resolution Scan of the Silicon 2p Line AZC036, 2000 Angstroms
Silicone on Z93 White Ceramic Paint, Ground Control
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APPENDIX H

MATERIAL ANALYSIS DATA

SEM & EDAX DATA

WHITE SANDS TEST FACILITY (WSTF)/JOHNSON SPACE CENTER (JSC)
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Figure H-1.  500x & 1000x SEM Image of AZC033, Z93P White Ceramic Paint,

Ground Control Sample.
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Figure H-2.  500x & 1000x SEM Image of AZC032, Z93 White Ceramic Paint,
Flight Exposed Sample.
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Figure H-3.  Close up SEM Image of AZC032 “Crystal Type Feature,”
Z93 White Ceramic Paint, Flight Exposed Sample.

Figure H-4.  Close up SEM Image of AZC032 “Mica Type Feature,”
Z93 White Ceramic Paint, Flight Exposed Sample.
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Figure H-5. EDAX Spectrum of AZC032 “Crystal Type Feature,”
Z93P White Ceramic Paint, Flight Exposed Sample.
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Figure H-6. EDAX Spectrum of AZC032 “Mica Type Feature,”
Z93P White Ceramic Paint, Flight Exposed Sample



91-1-118-169
December 31, 1999

X

Figure H-7.  500x & 1000x SEM Image of AZC017, AZ93 White Ceramic Paint
with Teflon Overcoat, Ground Control Sample
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Figure H-8.  500x & 1000x SEM Image of AZC018, AZ93 White Ceramic Paint
with Teflon Overcoat, Flight Exposed Sample
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Figure H-9.  500x & 1000x SEM Image of AZC030, 2000 Angstroms Tefzel
on Z93 White Ceramic Paint, Ground Control Sample
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Figure H-10. 500x & 1000x SEM Image of AZC029, 2000 Angstroms Tefzel
on Z93 White Ceramic Paint, Flight Exposed Sample
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Figure H-12. 500x & 1000x SEM Image of AZC028, 500 Angstroms Tefzel
on Z93 White Ceramic Paint, Flight Exposed Sample
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Figure H-14.  500x & 1000x SEM Image of AZC037, 2000 Angstroms Silicone
on Z93 White Ceramic Paint, Flight Exposed Sample

H-14



91-1-118-169
December 31, 1999

00 X
w w g
nun (+] a]
Y
> 10 ﬁ 1]
ooo -—
L @ O 0O«
. o]
I o« o ui::
T 1]
~N
| B | >
0
X+ ]
]
G )]
nsaOo o
WL o o >
« 0 W
™ = Y
N v
. N -
4] m
m Q o N
..'m'l"u
0O ZN
<+ 00«
om -
0O« = yd
onmNnN Y o QN &}
i O
1 <« 0 n ni("l
O <! E (]
L | 0 6%
0w {0 Y
(3 ol | 0
o4Mm
<t T L A

Figure H-15. EDAX Spectrum of AZC037 “Mica Type Feature,” 2000 Angstroms Silicone
on Z93P White Ceramic Paint, Flight Exposed Sample
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Figure H-16. 500 x & 1000 x SEM Image of AZC034, 500 Angstroms Silicone
on Z93 White Ceramic Paint, Ground Control Sample
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APPENDIX I

LISTING OF PASSIVE SAMPLES
PRE- AND POST-FLIGHT PASSIVE SAMPLE DATA
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Pre- & Post-Flight Transmission of Quartz Crystal Window SV21-02
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Table K-2.  Total Hemispherical Emittance and
Solar Absorptance Data for TIS Samples

3 o =
2 = < =
H . e (88 ° ° %
E |2 |82 |55 [z5s xf |z
z E |& |BE |2E: 28 [£3
Description o Z S |2 = % SE - E' = £
= K- E |- - 2akE i <2
£ g = |53 of Ia 2e |E<
@ z = [EF g S o
: < i = |
Optical Coatings- STOI |[STI-01] F | 0.859 0.840
Niobia/Silica
Optical Coatings- STO1 [STI-02| B | 0.858
Niobia/Silica
Optical Coatings- ST02 |ST2-01 | F | 0.858
Zirconia/Silica
Optical Coatings- ST02 |ST2-02] B | 0.861
Zirconia/Silica

Diamond like carbon (DLC) | ST03 |ST3-0I| F [ 0.751
on silicon

Titanium Diboride ST04 |ST4-01| F | 0.306
Zirconium Diboride on STOS [SI501| F | 0236
silicon

TixByNz film on silicon ST06 |ST6-01| F | 0321
as-grown, undoped CVD ST07 [ST/-01[ F | 0.707 |
Diamond

TixByOz film on silicon ST08 |[S18-01| F | 0626
ZrxByNz film on silicon STO9 | ST9-01 | F 0.251

as-grown, boron-doped CVD| ST10 |STI0-01] F | 0.765
Diamond
as-grown, phosphorus-doped | ST11 |ST11-01] F | 0.707
CVD Diamond
[Carbon nitride (CxNy) film | SI12 |STI2-01| F | 0.665
on silicon
Titanium nitride (1IN) film | ST13 [SI13-01] F | 0217
on silicon
First surface aluminum- ST14 [ST14-01] F | 0.019
coated levelized aluminum
mirror

First surface aluminum- STi14 |ST14-02[ B | 0.020
coated levelized aluminum
mirror
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-] S
" . k| 5 3
£ % §I1EE Sy 2 |xg
5 E g |1FE |2£: g8 |&:2
Description % Z S |28 TEE £ |2%
= | B zF |EES 52 |22
P E £
1SS Solar Array Blanket ST15 |ST15-01] F | 0.720 0.708
Face Sheet
1SS Solar Array Blanket ST15 |ST15-02] B | 0.712 0.715
Face Sheet
Gold Mirror ST16 |ST16-01] F | 0.008
Gold Mirror ST16 |STi6-02] B | 0.007

Kapton H (flown as 4 layers | ST17 [ST17-01 F 0.875
of 5 mil, tested as 1 layer) .
Kapton H (see also SP31-02)| ST17 |ST17-02| B na

MgF2 Overcoated STI8 [STi8-01] F | 0.016

Aluminum Mirror .

MgF2 Overcoated STIS [ST18-02] B | 0017 | 0020 [N 0.091 | 0.090 M
Aluminum Mirror

Platinum Mirror STI19 |ST19-02f F 0.045

Platinum Mirror ST19 |STi9-01| B 0.044

Silver/Teflon (5 mil) ST20 [ST20-01] F | 0.710 | 0.718

Silver/Teflon (5 mil) ST20 |ST20-02| B | 0.704
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